
NAIS Journal 43

Mining compact high utility sequential patterns

Tai Dinh （The Kyoto College of Graduate Studies for Informatics)
Philippe Fournier-Viger (College of Computer Science and Software Engineering, Shenzhen University)

Huynh Van Hong (Ho Chi Minh University of Natural Resources and Environment)

1

Mining compact high utility sequential patterns
Tai Dinh1, Philippe Fournier-Viger2, Huynh Van Hong3

1 The Kyoto College of Graduate Studies for Informatics
2 College of Computer Science and Software Engineering, Shenzhen University

3 Ho Chi Minh University of Natural Resources and Environment

AAbbssttrraacctt

High utility sequential pattern mining (HUSPM) aims to mine all patterns that yield a high utility (profit) in a
sequence dataset. HUSPM is useful for several applications such as market basket analysis, marketing, and
website clickstream analysis. In these applications, users may also consider high utility patterns frequently
appearing in the dataset to obtain more fruitful information. However, this task is high computation since
algorithms may generate a combinatorial explosive number of candidates that may be redundant or of low
importance. To reduce complexity and obtain a compact set of frequent high utility sequential patterns (FHUSPs),
this paper proposes an algorithm named CHUSP for mining closed frequent high utility sequential patterns
(CHUSPs). Such patterns keep a concise representation while preserving the same expressive power of the
complete set of FHUSPs. The proposed algorithm relies on a CHUS data structure to maintain information during
mining. It uses three pruning strategies to eliminate early low-utility and non-frequent patterns, thereby reducing
the search space. An extensive experimental evaluation was performed on six real-life datasets to evaluate the
performance of CHUSP in terms of execution time, memory usage, and the number of generated patterns.
Experimental results show that CHUSP can efficiently discover the compact set of CHUSPs under different user-
defined thresholds.

KKeeyywwoorrddss: data mining, high utility sequential patterns, closed high utility sequential patterns

11.. IInnttrroodduuccttiioonn

Frequent high utility sequential pattern mining
(FHUSPM) finds sequential patterns with high utility
and frequently appear in sequence datasets. Such
patterns appear commonly in various real-life
applications such as market basket analysis, web- site
clickstream analysis, customer behavior analysis, and
stock market analysis. In market basket analysis,
when analyzing customer transactions, a retail store
manager may be interested in finding the high utility
patterns that appear regularly and have a high sale
volume. Detecting these purchase patterns is useful
for understanding customers’ behavior and thus
adopting effective sales and marketing strategies. For
example, high-end electronic devices and jewelry may
generate more profit than many daily-life products.
However, they may be sold infrequently, and their

sales volumes may greatly fluctuate. Suppose retailers
know that some products yield a high profit and are
frequently purchased; they can change business
strategies for these items to increase sales and
improve inventory management. In marketing,
marketers want to know some sets of products
frequently sold with high revenue. They can better
understand customers’ preferences and then design
efficient marketing strategies. In website clickstream
analysis, the number of clicks or time spent on each
web page or user interface (UI) element can be viewed
as the quantities of items in sequences. Thus,
administrators can discover the elements where users
spend most of their time. Based on that,
administrators can improve functions and UI to suit
these important behaviors better.

Although the problem of HUSPM and its
extensions have been studied in several previous

44 NAIS Journal

2

studies [1–7], these algorithms discover a full set of
HUSPs requiring exponential complexity. Therefore,
in this paper, we extend the concept of closed patterns
from frequent sequential pattern mining [8] for
HUSPM. A closed (frequent) high utility sequential
pattern (CHUSP) is a HUSP having no proper super-
sequences that are HUSPs and appear in the same
number of sequences. Such patterns are also
meaningful for real-life applications since they are the
largest FHUSPs common to groups of customers.
Detecting the largest sets of items yielding high profit
and frequently sold supports sellers to understand
better what customers need, adapt their business and
marketing strategies, and improve their services.
There is a work [9] focusing on this topic in literature.
However, the computational complexity of this
algorithm is still high. In addition, the experimental
evaluation was conducted on small-scale datasets
which a few differences in characteristics. Last, this
work did not provide the application accompanying its
proposed algorithms.

The above observations motivated the design of an
efficient algorithm that can mine CHUSPs. Generally,
we highlighted the major contributions and
innovations of this paper as follows:
− We proposed an efficient pattern-growth-based

algorithm named CHUSP to discover the set of
CHUSPs interesting for some tasks. CHUSP
mines the patterns from the dataset in a divide-
and-conquer approach. It first derives the set of
size-1 quantitative sequences, and for each
sequence p, it derives p’s conditional (or projected)
dataset by partitioning it and recursively mining
the projected dataset. An innovation of the CHUSP
is that the algorithm checks the “closed” property
of the generated pattern at each round of the
mining process. Thanks to this property, at the end
of the mining process, we obtain a small set of
CHUSPs. The algorithm uses three pruning
strategies to eliminate early low-utility and non-
frequent patterns. Thus, the algorithm achieves
good performances on large-scale datasets.

− An extensive experiment was conducted on real
datasets to evaluate the performance of CHUSP in
terms of runtime, memory usage, and the number
of generated patterns. Experimental results show

that CHUSP can efficiently discover all CHUSPs.
In addition, its performance is independent of the
datasets’ characteristics if they contain utility
information, i.e., it can work on both quantitative
transaction and quantitative sequence datasets.

− We provide the application of CHUSP. The
application can be used for any dataset if its format
matches the input requirement.

The rest of this paper is organized as follows. Section
2 reviews related work; section 3 introduces the
preliminaries; section 4 describes the proposed
CHUSP algorithm; section 5 shows a comparative
experiment; section 6 concludes and outlines the
direction for future work.

22.. RReellaatteedd WWoorrkk

High utility sequential patterns mining aims to
find all sequential patterns with a utility greater than
or equal to a minimum utility threshold minUtil in a
sequence dataset. HUSPM is quite challenging as the
utility measure is neither monotone nor anti-
monotone, unlike the support measure traditionally
used in SPM. Numerous algorithms have been
proposed for HUSPM, and its extension [1–7, 10–20].
A thorough survey of HUSPM can be found in this
work [21]. Yin et al. [1] proposed an algorithm named
USpan for HUSPM. This algorithm builds a
lexicographic q-sequence tree (LQS-Tree) to maintain
all generated sequences during the mining process. In
addition, it uses two concatenation mechanisms: I-
Concatenation and S-Concatenation, in combination
with two pruning strategies: width and depth pruning.
Wang et al. [2] proposed an algorithm named HUS-
Span. The algorithm uses a utility-chain structure to
represent the search space of HUSPM. It also
introduces two tight utility upper bounds: prefix
extension utility (PEU) and reduced sequence utility
(RSU), as well as two companion pruning strategies to
identify HUSPs. The experimental evaluation showed
that HUS-Span outperforms USpan in terms of
execution time. The reason is that by using PEU and
RSU, HUS-Span can generate fewer candidates than
USpan.

Le et al. [3] proposed two algorithms, AHUS and

NAIS Journal 45

2

studies [1–7], these algorithms discover a full set of
HUSPs requiring exponential complexity. Therefore,
in this paper, we extend the concept of closed patterns
from frequent sequential pattern mining [8] for
HUSPM. A closed (frequent) high utility sequential
pattern (CHUSP) is a HUSP having no proper super-
sequences that are HUSPs and appear in the same
number of sequences. Such patterns are also
meaningful for real-life applications since they are the
largest FHUSPs common to groups of customers.
Detecting the largest sets of items yielding high profit
and frequently sold supports sellers to understand
better what customers need, adapt their business and
marketing strategies, and improve their services.
There is a work [9] focusing on this topic in literature.
However, the computational complexity of this
algorithm is still high. In addition, the experimental
evaluation was conducted on small-scale datasets
which a few differences in characteristics. Last, this
work did not provide the application accompanying its
proposed algorithms.

The above observations motivated the design of an
efficient algorithm that can mine CHUSPs. Generally,
we highlighted the major contributions and
innovations of this paper as follows:
− We proposed an efficient pattern-growth-based

algorithm named CHUSP to discover the set of
CHUSPs interesting for some tasks. CHUSP
mines the patterns from the dataset in a divide-
and-conquer approach. It first derives the set of
size-1 quantitative sequences, and for each
sequence p, it derives p’s conditional (or projected)
dataset by partitioning it and recursively mining
the projected dataset. An innovation of the CHUSP
is that the algorithm checks the “closed” property
of the generated pattern at each round of the
mining process. Thanks to this property, at the end
of the mining process, we obtain a small set of
CHUSPs. The algorithm uses three pruning
strategies to eliminate early low-utility and non-
frequent patterns. Thus, the algorithm achieves
good performances on large-scale datasets.

− An extensive experiment was conducted on real
datasets to evaluate the performance of CHUSP in
terms of runtime, memory usage, and the number
of generated patterns. Experimental results show

that CHUSP can efficiently discover all CHUSPs.
In addition, its performance is independent of the
datasets’ characteristics if they contain utility
information, i.e., it can work on both quantitative
transaction and quantitative sequence datasets.

− We provide the application of CHUSP. The
application can be used for any dataset if its format
matches the input requirement.

The rest of this paper is organized as follows. Section
2 reviews related work; section 3 introduces the
preliminaries; section 4 describes the proposed
CHUSP algorithm; section 5 shows a comparative
experiment; section 6 concludes and outlines the
direction for future work.

22.. RReellaatteedd WWoorrkk

High utility sequential patterns mining aims to
find all sequential patterns with a utility greater than
or equal to a minimum utility threshold minUtil in a
sequence dataset. HUSPM is quite challenging as the
utility measure is neither monotone nor anti-
monotone, unlike the support measure traditionally
used in SPM. Numerous algorithms have been
proposed for HUSPM, and its extension [1–7, 10–20].
A thorough survey of HUSPM can be found in this
work [21]. Yin et al. [1] proposed an algorithm named
USpan for HUSPM. This algorithm builds a
lexicographic q-sequence tree (LQS-Tree) to maintain
all generated sequences during the mining process. In
addition, it uses two concatenation mechanisms: I-
Concatenation and S-Concatenation, in combination
with two pruning strategies: width and depth pruning.
Wang et al. [2] proposed an algorithm named HUS-
Span. The algorithm uses a utility-chain structure to
represent the search space of HUSPM. It also
introduces two tight utility upper bounds: prefix
extension utility (PEU) and reduced sequence utility
(RSU), as well as two companion pruning strategies to
identify HUSPs. The experimental evaluation showed
that HUS-Span outperforms USpan in terms of
execution time. The reason is that by using PEU and
RSU, HUS-Span can generate fewer candidates than
USpan.

Le et al. [3] proposed two algorithms, AHUS and

3

AHUS-P. The algorithms use a pure array structure
(PAS) to represent sequences. This data structure is
very compact and contains sufficient information on
sequences. Thus, it can reduce memory usage and
effectively support the mining process. Moreover, the
two algorithms use two upper bounds to prune the
search space. AHUS-P uses a parallel mining strategy
to discover patterns concurrently by sharing the
search space with multiple processors. Each processor
independently performs its mining task and does not
wait for other tasks. AHUS-P is more efficient than
the serial AHUS algorithm for large-scale datasets.
Lin et al. [22] proposed a sequence-utility (SU)-Chain
algorithm for HUSPM. A lexicographic enumeration
(LE)-tree is used in the algorithm to represent the
search space for promising candidates. The projecting
approach is used to accelerate the progress of
generating promising candidates. In addition,
multiple pruning strategies are used to identify
information not relevant to the mining progress.

For frequent high utility sequential pattern mining,
Gupta et al. [23] proposed a hybrid pattern growth-
based algorithm named HUFTI-SPM to mine
sequential patterns satisfying both frequency and
utility thresholds. It uses support–utility table to
maintain information on support and utility at various
time intervals. It uses sequence support as the
downward closure property to reduce the search space.
Ni et al. [24] proposed an algorithm named FHUSOM
to mine the architecture design requirements from the
operational scenario data. The algorithm uses a data
structure called FHUDS to keep all patterns and
combines four pruning strategies called SWU, PEU,
RSU, and MFP to reduce the search space. The
algorithm supports the design of an integrated multi-
platform mission system (MPMS) architect and is
efficient in the process of integrated architecture
design.

For closed high utility sequential pattern mining,
Truong et al. [9] proposed an algorithm named
FMaxCloHUSM to mine the set of frequent maximal
and closed high utility sequences. The algorithm uses
width and depth pruning strategies to remove low
utility sequences and a novel local pruning strategy
named LPCHUS to remove non-closed and non-
maximal high utility sequences. FMaxCloHUSM uses

a data structure called SIDUL to represent the dataset
in a vertical format and calculate utility information of
sequences and their extensions.

33.. PPrreelliimmiinnaarriieess

Given a set of m distinct items I = {𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖2, … , 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚} . A
quantitative item (q-item) is a pair of the form (𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞)
where i ∈ 𝐼𝐼𝐼𝐼 and q is a positive number representing
how many units of this item were purchased (internal
utility). The quantity of a q-item i in s is denoted as
q(𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠) . Each item 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ∈ 𝐼𝐼𝐼𝐼 (1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚) is associated
with a weight denoted as p(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘) representing the unit
profit or importance (external utility) of 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 . A
quantitative itemset (q-itemset) X =
[(𝑖𝑖𝑖𝑖1, 𝑞𝑞𝑞𝑞1)(𝑖𝑖𝑖𝑖2, 𝑞𝑞𝑞𝑞2) … (𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘)] is a set of one or more q-
items where �𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 , 𝑞𝑞𝑞𝑞𝑗𝑗𝑗𝑗� is a q-item(1 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑘𝑘𝑘𝑘) . In the
following, brackets are omitted for brevity if a q-
itemset contains only one q-item. In addition, without
loss of generality, assume that q-items in a q-itemset
are sorted according to the lexicographical order such
as a  ≺ 𝑏𝑏𝑏𝑏  ≺ 𝑐𝑐𝑐𝑐  ≺ 𝑑𝑑𝑑𝑑  ≺ 𝑒𝑒𝑒𝑒  ≺ 𝑓𝑓𝑓𝑓  ≺ 𝑔𝑔𝑔𝑔. A quantitative
sequence (q-sequence) s is an ordered list of q-itemsets
s = ⟨𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼2 … 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙⟩ where 𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑙𝑙𝑙𝑙) is a q-itemset. A
quantitative sequence dataset is a set of n q-sequences
SDB = {𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛}, where each sequence 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈
𝑆𝑆𝑆𝑆 (1 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛) is a subset of I, and sid is its unique
identifier.
For example, Table 1 shows the items and their
respective unit profits appearing in an online retail
store. In this example, the external utility of each item
a, b, c, d, e, f, g are 2, 5, 3, 4, 6, 1, 7, respectively.
Table 2 shows five shopping q-sequences with
quantities, having the sequence identifiers (sid) 1 to 5
(denoted 𝑠𝑠𝑠𝑠1 to 𝑠𝑠𝑠𝑠5). Each q-sequence comprises one or
more transactions (q-itemsets). Each transaction in a
q-sequence has a unique transaction identifier tid, and
consists of one or many q-items.
The q-sequence 𝑠𝑠𝑠𝑠4 contains three q-itemsets
[(𝑏𝑏𝑏𝑏, 1)𝑐𝑐𝑐𝑐(1)(𝑒𝑒𝑒𝑒, 2)(𝑔𝑔𝑔𝑔, 5)],   [(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 4)(𝑓𝑓𝑓𝑓, 2)] and
[(𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)] in which the internal utility of q-
item e in the first, second and third q-itemsets are 2, 4
and 2, respectively. We use the notation 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to refer to
the occurrence of the item i in the tid − th
transactions of a q-sequence. In 𝑠𝑠𝑠𝑠2 , the notation 𝑐𝑐𝑐𝑐1
means that the q-item c appears in the first q-itemset

46 NAIS Journal

4

of 𝑠𝑠𝑠𝑠2 , that is (𝑐𝑐𝑐𝑐, 2), while 𝑐𝑐𝑐𝑐3 represents (𝑐𝑐𝑐𝑐, 1) in the
third q-itemset of 𝑠𝑠𝑠𝑠2, and 𝑐𝑐𝑐𝑐1 ≺ 𝑐𝑐𝑐𝑐3 in 𝑠𝑠𝑠𝑠2.

Table 1: External utility values

item a b c d e f g
unit profit 2 5 3 4 6 1 7

Table 2: External utility values

sid tid transactions tu su

1
1 (𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5) 51

108 2 (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2) 22
3 (𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2) 35

2
1 (𝑐𝑐𝑐𝑐, 2)(𝑒𝑒𝑒𝑒, 1) 12

110 2 (𝑎𝑎𝑎𝑎, 2)(𝑏𝑏𝑏𝑏, 2)(𝑓𝑓𝑓𝑓, 5) 19
3 (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 4)(𝑔𝑔𝑔𝑔, 6) 79

3

1 (𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3) 25

91 2 (𝑐𝑐𝑐𝑐, 3)(𝑑𝑑𝑑𝑑, 2)(𝑔𝑔𝑔𝑔, 3) 38
3 (𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 1) 16
4 (𝑑𝑑𝑑𝑑, 3) 12

4
1 (𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)(𝑔𝑔𝑔𝑔, 5) 55

122 2 (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 4)(𝑓𝑓𝑓𝑓, 2) 42
3 (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2) 25

5 1 (𝑎𝑎𝑎𝑎, 4)(𝑑𝑑𝑑𝑑, 2)(𝑓𝑓𝑓𝑓, 2)(𝑔𝑔𝑔𝑔, 10) 88 88

DDeeffiinniittiioonn 11 ((TThhee ssiizzee aanndd lleennggtthh ooff aa qq--sseeqquueennccee)) The
size of 𝑠𝑠𝑠𝑠 is the number of q-itemsets it contains. The
length of s is the number of q-items in 𝑠𝑠𝑠𝑠 . In other
words, 𝑠𝑠𝑠𝑠 is called k-sequence if and only if there are k

q-items in 𝑠𝑠𝑠𝑠, i.e., |𝑠𝑠𝑠𝑠| = 𝑘𝑘𝑘𝑘, where |𝑠𝑠𝑠𝑠| = ∑ �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗�𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗⊆𝑠𝑠𝑠𝑠 and �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗�

is the total number of q-items in the q-itemset 𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗. For
example, the size and length of 𝑠𝑠𝑠𝑠4 in Table 1 are 3 and
11, respectively.

DDeeffiinniittiioonn 22 ((qq--iitteemmsseett ccoonnttaaiinnmmeenntt))

Let 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 = ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚�� and 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 =

��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏1 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏1��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏2 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏2�… �𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′ , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′�� be two q-itemsets,

where 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚) and 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘′ ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘′ ≤ 𝑚𝑚𝑚𝑚′) .

If there exist positive integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤

𝑚𝑚𝑚𝑚′, such that 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2 =

𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 , … , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 then 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 is said to

contain 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 , denoted as 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 ⊆ 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 . For example, q-
itemset [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] in 𝑠𝑠𝑠𝑠3 contains (𝑎𝑎𝑎𝑎, 1), (𝑏𝑏𝑏𝑏, 1),
(𝑒𝑒𝑒𝑒, 3) , [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)] , [(𝑎𝑎𝑎𝑎, 1)(𝑒𝑒𝑒𝑒, 3)] , [(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] ,
[(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)].

DDeeffiinniittiioonn 33 ((qq--ssuubbsseeqquueennccee))
Given q-sequences 𝐴𝐴𝐴𝐴 = ⟨𝐴𝐴𝐴𝐴1𝐴𝐴𝐴𝐴2 …𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛⟩ and 𝐵𝐵𝐵𝐵 =
⟨𝐵𝐵𝐵𝐵1𝐵𝐵𝐵𝐵2 …𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛′⟩(𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′) , where 𝐴𝐴𝐴𝐴α,𝐵𝐵𝐵𝐵β are q-itemsets
(1 ≤ α ≤ 𝑛𝑛𝑛𝑛, 1 ≤ β ≤ 𝑛𝑛𝑛𝑛′) . If there exists positive
integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′ , such that 𝐴𝐴𝐴𝐴1 ⊆
𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗1 ,𝐴𝐴𝐴𝐴2 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗2 , … ,𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛, then 𝐴𝐴𝐴𝐴 is a q-subsequence of
𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 is a q-supersequence of 𝐴𝐴𝐴𝐴 , denoted as 𝐴𝐴𝐴𝐴 ⊆
𝐵𝐵𝐵𝐵. For example, ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]⟩ and
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]⟩ are q-subsequences of 𝑠𝑠𝑠𝑠1.

DDeeffiinniittiioonn 44 ((UUttiilliittyy ooff aa qq--sseeqquueennccee))
The utility of an (𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) in 𝑠𝑠𝑠𝑠 is denoted and defined as
𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) × 𝑞𝑞𝑞𝑞(𝑖𝑖𝑖𝑖). The utility of a q-itemset 𝑋𝑋𝑋𝑋 in 𝑠𝑠𝑠𝑠
is denoted and defined as 𝑢𝑢𝑢𝑢(𝑋𝑋𝑋𝑋) = ∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘)𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 . The
utility of 𝑠𝑠𝑠𝑠 is denoted and defined as 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠) =

∑ 𝑢𝑢𝑢𝑢�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1 .

For example, the utility of 𝑔𝑔𝑔𝑔 in 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) = 7 × 5 =
35. The utility of [(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)] in 𝑠𝑠𝑠𝑠1 is
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) = 𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 5) + 𝑢𝑢𝑢𝑢(𝑐𝑐𝑐𝑐, 2) + 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) =
2 × 5+3 × 2+7 × 5 = 51. The utility of 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠1) =
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) + u ([(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]) +
𝑢𝑢𝑢𝑢([(𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2)]) = 51 + 22 + 35 = 108.

DDeeffiinniittiioonn 55 ((UUttiilliittyy mmaattrriixx))
A utility matrix of 𝑠𝑠𝑠𝑠 is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛 matrix, where 𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑛𝑛
are the number of q-items and q-itemsets
(transactions) in 𝑠𝑠𝑠𝑠 , respectively. The element at the
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗) (0  ≤ 𝑘𝑘𝑘𝑘  <  𝑚𝑚𝑚𝑚,  0  ≤ 𝑗𝑗𝑗𝑗  <  𝑛𝑛𝑛𝑛) of the utility
matrix stores the utility 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) of the q-item (𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) in
the q-itemset 𝑗𝑗𝑗𝑗. Table 3 shows the utility matrix of 𝑠𝑠𝑠𝑠3
for the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 depicted in Table 2.

DDeeffiinniittiioonn 66 ((RReemmaaiinniinngg uuttiilliittyy))
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ where 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 =

��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘1 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘1��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘2 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘2�… �𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚�� is a q-itemset of s.

The remaining utility of q-item 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 in s is denoted and

5

defined as 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 , 𝑠𝑠𝑠𝑠� =∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖′)𝑠𝑠𝑠𝑠′∈𝑠𝑠𝑠𝑠∧𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚≺𝑠𝑠𝑠𝑠
′ . For example,

the values 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎1, 𝑠𝑠𝑠𝑠3) , 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏1, 𝑠𝑠𝑠𝑠3) and 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏3, 𝑠𝑠𝑠𝑠3) are
respectively equal to 89, 84 and 18.

Table 3: The utility matrix of 𝑠𝑠𝑠𝑠3

item tid1 tid2 tid3 tid4
a 2 0 0 0
b 5 0 10 0
c 0 9 0 0
d 0 8 0 12
e 18 0 6 0
g 0 21 0 0

Table 4: The remaining utility matrix of 𝑠𝑠𝑠𝑠3

item tid1 tid2 tid3 tid4
a 89 0 0 0
b 84 0 18 0
c 0 57 0 0
d 0 49 0 0
e 66 0 12 0
g 0 28 0 0

DDeeffiinniittiioonn 77 ((RReemmaaiinniinngg uuttiilliittyy mmaattrriixx))
The remaining utility matrix of 𝑠𝑠𝑠𝑠 is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛 matrix,
where 𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑛𝑛 are the number of q-items and q-
itemsets (transactions) in 𝑠𝑠𝑠𝑠 . The element at the
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗)(0 ≤ 𝑘𝑘𝑘𝑘 < 𝑚𝑚𝑚𝑚, 0 ≤ 𝑗𝑗𝑗𝑗 < 𝑛𝑛𝑛𝑛) of the
remaining utility matrix stores the 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) of q-item
(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) in q-itemset j. For example, Table 4 shows the
remaining utility matrix of 𝑠𝑠𝑠𝑠3.

DDeeffiinniittiioonn 88 ((MMaattcchhiinngg))
Given 𝑠𝑠𝑠𝑠 = ⟨(𝑖𝑖𝑖𝑖1, 𝑞𝑞𝑞𝑞1)(𝑖𝑖𝑖𝑖2, 𝑞𝑞𝑞𝑞2) … (𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛, 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛)⟩ and a sequence
𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩, 𝑠𝑠𝑠𝑠 is said to match 𝑡𝑡𝑡𝑡 if and only if 𝑛𝑛𝑛𝑛 =
𝑚𝑚𝑚𝑚 and 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 for 1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛, denoted as t ∼ 𝑠𝑠𝑠𝑠.
For example, sequence ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⟩ matches
𝑠𝑠𝑠𝑠1. Note that because of quantities, two q-items may
be considered different, although they contain the
same item. Hence there could be multiple q-
subsequences of a q-sequence matching a given

sequence. For instance, sequence ⟨(𝑒𝑒𝑒𝑒)⟩ matches
respectively the q-subsequence ⟨(𝑒𝑒𝑒𝑒, 3)⟩ and ⟨(𝑒𝑒𝑒𝑒, 1)⟩ in
the first and third q-itemsets of 𝑠𝑠𝑠𝑠3 . Sequence ⟨[𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐]⟩
matches both the q-subsequences ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)]⟩ and
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑐𝑐𝑐𝑐, 3)]⟩ of 𝑠𝑠𝑠𝑠1.

DDeeffiinniittiioonn 99 ((EEnnddiinngg qq--iitteemm mmaaxxiimmuumm uuttiilliittyy)
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ where 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗 ≤
𝑛𝑛𝑛𝑛) is a q-itemset and a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩. If any
q-subsequence 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = �𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎2 …𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚� (𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ∼

𝑡𝑡𝑡𝑡) where 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚= ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚��, then

�𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚� is called the ending q-item of sequence 𝑡𝑡𝑡𝑡 in

𝑠𝑠𝑠𝑠. The ending q-item maximum utility of a sequence 𝑡𝑡𝑡𝑡
in 𝑠𝑠𝑠𝑠 is denoted and defined as 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠) =
 max { 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)|𝑠𝑠𝑠𝑠′ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠′ ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠′}.
For example, the ending q-items of 𝑡𝑡𝑡𝑡 = ⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩ in 𝑠𝑠𝑠𝑠3 are
𝑑𝑑𝑑𝑑2, 𝑑𝑑𝑑𝑑4 and their ending q-item maximum utility are
𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑2, 𝑠𝑠𝑠𝑠3) = max(13) = 13 and 𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑4, 𝑠𝑠𝑠𝑠3) =
max(17,22) = 22, respectively.

DDeeffiinniittiioonn 1100 ((SSeeqquueennccee uuttiilliittyy))
The sequence utility of a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩ in
𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ is denoted and defined as 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) =
⋃ 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡∧𝑠𝑠𝑠𝑠′⊆𝑠𝑠𝑠𝑠 . The utility of t in the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is
denoted and defined as a utility set: 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) = ⋃ 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆 .
For example, the utility of 𝑡𝑡𝑡𝑡 = ⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩ in 𝑠𝑠𝑠𝑠1 is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1)
= {𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 1)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 3)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 3)(𝑏𝑏𝑏𝑏, 3)⟩)}
= {11,  21,  24} . The utility of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) =
{𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠2), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠3),𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠4)} = {11,  21,  24,
16,  16,  19,  13,  13}.

DDeeffiinniittiioonn 1111 ((SSeeqquueennccee mmaaxxiimmuumm uuttiilliittyy))
Given a sequence 𝑡𝑡𝑡𝑡, the maximum utility of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is
denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) =
max{𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠):∀𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠 ’ ∧ 𝑠𝑠𝑠𝑠 ’ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠 ’ ⊆ 𝑠𝑠𝑠𝑠}.
The maximum utility of a sequence 𝑡𝑡𝑡𝑡 in a q-sequence
dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =
∑𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) :∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆.
For example, the maximum utility of the sequence 𝑡𝑡𝑡𝑡 =
⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩ in the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠1) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠2) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠3) +
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠4) = 24 + 16 + 19 + 13 = 72.

NAIS Journal 47

4

of 𝑠𝑠𝑠𝑠2 , that is (𝑐𝑐𝑐𝑐, 2), while 𝑐𝑐𝑐𝑐3 represents (𝑐𝑐𝑐𝑐, 1) in the
third q-itemset of 𝑠𝑠𝑠𝑠2, and 𝑐𝑐𝑐𝑐1 ≺ 𝑐𝑐𝑐𝑐3 in 𝑠𝑠𝑠𝑠2.

Table 1: External utility values

item a b c d e f g
unit profit 2 5 3 4 6 1 7

Table 2: External utility values

sid tid transactions tu su

1
1 (𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5) 51

108 2 (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2) 22
3 (𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2) 35

2
1 (𝑐𝑐𝑐𝑐, 2)(𝑒𝑒𝑒𝑒, 1) 12

110 2 (𝑎𝑎𝑎𝑎, 2)(𝑏𝑏𝑏𝑏, 2)(𝑓𝑓𝑓𝑓, 5) 19
3 (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 4)(𝑔𝑔𝑔𝑔, 6) 79

3

1 (𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3) 25

91 2 (𝑐𝑐𝑐𝑐, 3)(𝑑𝑑𝑑𝑑, 2)(𝑔𝑔𝑔𝑔, 3) 38
3 (𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 1) 16
4 (𝑑𝑑𝑑𝑑, 3) 12

4
1 (𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)(𝑔𝑔𝑔𝑔, 5) 55

122 2 (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 4)(𝑓𝑓𝑓𝑓, 2) 42
3 (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2) 25

5 1 (𝑎𝑎𝑎𝑎, 4)(𝑑𝑑𝑑𝑑, 2)(𝑓𝑓𝑓𝑓, 2)(𝑔𝑔𝑔𝑔, 10) 88 88

DDeeffiinniittiioonn 11 ((TThhee ssiizzee aanndd lleennggtthh ooff aa qq--sseeqquueennccee)) The
size of 𝑠𝑠𝑠𝑠 is the number of q-itemsets it contains. The
length of s is the number of q-items in 𝑠𝑠𝑠𝑠 . In other
words, 𝑠𝑠𝑠𝑠 is called k-sequence if and only if there are k

q-items in 𝑠𝑠𝑠𝑠, i.e., |𝑠𝑠𝑠𝑠| = 𝑘𝑘𝑘𝑘, where |𝑠𝑠𝑠𝑠| = ∑ �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗�𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗⊆𝑠𝑠𝑠𝑠 and �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗�

is the total number of q-items in the q-itemset 𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗. For
example, the size and length of 𝑠𝑠𝑠𝑠4 in Table 1 are 3 and
11, respectively.

DDeeffiinniittiioonn 22 ((qq--iitteemmsseett ccoonnttaaiinnmmeenntt))

Let 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 = ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚�� and 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 =

��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏1 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏1��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏2 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏2�… �𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′ , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′�� be two q-itemsets,

where 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚) and 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘′ ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘′ ≤ 𝑚𝑚𝑚𝑚′) .

If there exist positive integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤

𝑚𝑚𝑚𝑚′, such that 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2 =

𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 , … , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 then 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 is said to

contain 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 , denoted as 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 ⊆ 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 . For example, q-
itemset [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] in 𝑠𝑠𝑠𝑠3 contains (𝑎𝑎𝑎𝑎, 1), (𝑏𝑏𝑏𝑏, 1),
(𝑒𝑒𝑒𝑒, 3) , [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)] , [(𝑎𝑎𝑎𝑎, 1)(𝑒𝑒𝑒𝑒, 3)] , [(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] ,
[(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)].

DDeeffiinniittiioonn 33 ((qq--ssuubbsseeqquueennccee))
Given q-sequences 𝐴𝐴𝐴𝐴 = ⟨𝐴𝐴𝐴𝐴1𝐴𝐴𝐴𝐴2 …𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛⟩ and 𝐵𝐵𝐵𝐵 =
⟨𝐵𝐵𝐵𝐵1𝐵𝐵𝐵𝐵2 …𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛′⟩(𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′) , where 𝐴𝐴𝐴𝐴α,𝐵𝐵𝐵𝐵β are q-itemsets
(1 ≤ α ≤ 𝑛𝑛𝑛𝑛, 1 ≤ β ≤ 𝑛𝑛𝑛𝑛′) . If there exists positive
integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′ , such that 𝐴𝐴𝐴𝐴1 ⊆
𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗1 ,𝐴𝐴𝐴𝐴2 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗2 , … ,𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛, then 𝐴𝐴𝐴𝐴 is a q-subsequence of
𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵 is a q-supersequence of 𝐴𝐴𝐴𝐴 , denoted as 𝐴𝐴𝐴𝐴 ⊆
𝐵𝐵𝐵𝐵. For example, ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]⟩ and
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]⟩ are q-subsequences of 𝑠𝑠𝑠𝑠1.

DDeeffiinniittiioonn 44 ((UUttiilliittyy ooff aa qq--sseeqquueennccee))
The utility of an (𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) in 𝑠𝑠𝑠𝑠 is denoted and defined as
𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) × 𝑞𝑞𝑞𝑞(𝑖𝑖𝑖𝑖). The utility of a q-itemset 𝑋𝑋𝑋𝑋 in 𝑠𝑠𝑠𝑠
is denoted and defined as 𝑢𝑢𝑢𝑢(𝑋𝑋𝑋𝑋) = ∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘)𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 . The
utility of 𝑠𝑠𝑠𝑠 is denoted and defined as 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠) =

∑ 𝑢𝑢𝑢𝑢�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1 .

For example, the utility of 𝑔𝑔𝑔𝑔 in 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) = 7 × 5 =
35. The utility of [(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)] in 𝑠𝑠𝑠𝑠1 is
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) = 𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 5) + 𝑢𝑢𝑢𝑢(𝑐𝑐𝑐𝑐, 2) + 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) =
2 × 5+3 × 2+7 × 5 = 51. The utility of 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠1) =
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) + u ([(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]) +
𝑢𝑢𝑢𝑢([(𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2)]) = 51 + 22 + 35 = 108.

DDeeffiinniittiioonn 55 ((UUttiilliittyy mmaattrriixx))
A utility matrix of 𝑠𝑠𝑠𝑠 is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛 matrix, where 𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑛𝑛
are the number of q-items and q-itemsets
(transactions) in 𝑠𝑠𝑠𝑠 , respectively. The element at the
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗) (0  ≤ 𝑘𝑘𝑘𝑘  <  𝑚𝑚𝑚𝑚,  0  ≤ 𝑗𝑗𝑗𝑗  <  𝑛𝑛𝑛𝑛) of the utility
matrix stores the utility 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) of the q-item (𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) in
the q-itemset 𝑗𝑗𝑗𝑗. Table 3 shows the utility matrix of 𝑠𝑠𝑠𝑠3
for the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 depicted in Table 2.

DDeeffiinniittiioonn 66 ((RReemmaaiinniinngg uuttiilliittyy))
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ where 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 =

��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘1 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘1��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘2 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘2�… �𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚�� is a q-itemset of s.

The remaining utility of q-item 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 in s is denoted and

5

defined as 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 , 𝑠𝑠𝑠𝑠� =∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖′)𝑠𝑠𝑠𝑠′∈𝑠𝑠𝑠𝑠∧𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚≺𝑠𝑠𝑠𝑠
′ . For example,

the values 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎1, 𝑠𝑠𝑠𝑠3) , 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏1, 𝑠𝑠𝑠𝑠3) and 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏3, 𝑠𝑠𝑠𝑠3) are
respectively equal to 89, 84 and 18.

Table 3: The utility matrix of 𝑠𝑠𝑠𝑠3

item tid1 tid2 tid3 tid4
a 2 0 0 0
b 5 0 10 0
c 0 9 0 0
d 0 8 0 12
e 18 0 6 0
g 0 21 0 0

Table 4: The remaining utility matrix of 𝑠𝑠𝑠𝑠3

item tid1 tid2 tid3 tid4
a 89 0 0 0
b 84 0 18 0
c 0 57 0 0
d 0 49 0 0
e 66 0 12 0
g 0 28 0 0

DDeeffiinniittiioonn 77 ((RReemmaaiinniinngg uuttiilliittyy mmaattrriixx))
The remaining utility matrix of 𝑠𝑠𝑠𝑠 is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛 matrix,
where 𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑛𝑛 are the number of q-items and q-
itemsets (transactions) in 𝑠𝑠𝑠𝑠 . The element at the
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗)(0 ≤ 𝑘𝑘𝑘𝑘 < 𝑚𝑚𝑚𝑚, 0 ≤ 𝑗𝑗𝑗𝑗 < 𝑛𝑛𝑛𝑛) of the
remaining utility matrix stores the 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) of q-item
(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) in q-itemset j. For example, Table 4 shows the
remaining utility matrix of 𝑠𝑠𝑠𝑠3.

DDeeffiinniittiioonn 88 ((MMaattcchhiinngg))
Given 𝑠𝑠𝑠𝑠 = ⟨(𝑖𝑖𝑖𝑖1, 𝑞𝑞𝑞𝑞1)(𝑖𝑖𝑖𝑖2, 𝑞𝑞𝑞𝑞2) … (𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛, 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛)⟩ and a sequence
𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩, 𝑠𝑠𝑠𝑠 is said to match 𝑡𝑡𝑡𝑡 if and only if 𝑛𝑛𝑛𝑛 =
𝑚𝑚𝑚𝑚 and 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 for 1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛, denoted as t ∼ 𝑠𝑠𝑠𝑠.
For example, sequence ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⟩ matches
𝑠𝑠𝑠𝑠1. Note that because of quantities, two q-items may
be considered different, although they contain the
same item. Hence there could be multiple q-
subsequences of a q-sequence matching a given

sequence. For instance, sequence ⟨(𝑒𝑒𝑒𝑒)⟩ matches
respectively the q-subsequence ⟨(𝑒𝑒𝑒𝑒, 3)⟩ and ⟨(𝑒𝑒𝑒𝑒, 1)⟩ in
the first and third q-itemsets of 𝑠𝑠𝑠𝑠3 . Sequence ⟨[𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐]⟩
matches both the q-subsequences ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)]⟩ and
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑐𝑐𝑐𝑐, 3)]⟩ of 𝑠𝑠𝑠𝑠1.

DDeeffiinniittiioonn 99 ((EEnnddiinngg qq--iitteemm mmaaxxiimmuumm uuttiilliittyy)
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ where 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗 ≤
𝑛𝑛𝑛𝑛) is a q-itemset and a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩. If any
q-subsequence 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = �𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎2 …𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚� (𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ∼

𝑡𝑡𝑡𝑡) where 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚= ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚��, then

�𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚� is called the ending q-item of sequence 𝑡𝑡𝑡𝑡 in

𝑠𝑠𝑠𝑠. The ending q-item maximum utility of a sequence 𝑡𝑡𝑡𝑡
in 𝑠𝑠𝑠𝑠 is denoted and defined as 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠) =
 max { 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)|𝑠𝑠𝑠𝑠′ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠′ ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠′}.
For example, the ending q-items of 𝑡𝑡𝑡𝑡 = ⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩ in 𝑠𝑠𝑠𝑠3 are
𝑑𝑑𝑑𝑑2, 𝑑𝑑𝑑𝑑4 and their ending q-item maximum utility are
𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑2, 𝑠𝑠𝑠𝑠3) = max(13) = 13 and 𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑4, 𝑠𝑠𝑠𝑠3) =
max(17,22) = 22, respectively.

DDeeffiinniittiioonn 1100 ((SSeeqquueennccee uuttiilliittyy))
The sequence utility of a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩ in
𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ is denoted and defined as 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) =
⋃ 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡∧𝑠𝑠𝑠𝑠′⊆𝑠𝑠𝑠𝑠 . The utility of t in the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is
denoted and defined as a utility set: 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) = ⋃ 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆 .
For example, the utility of 𝑡𝑡𝑡𝑡 = ⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩ in 𝑠𝑠𝑠𝑠1 is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1)
= {𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 1)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 3)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 3)(𝑏𝑏𝑏𝑏, 3)⟩)}
= {11,  21,  24} . The utility of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) =
{𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠2), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠3),𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠4)} = {11,  21,  24,
16,  16,  19,  13,  13}.

DDeeffiinniittiioonn 1111 ((SSeeqquueennccee mmaaxxiimmuumm uuttiilliittyy))
Given a sequence 𝑡𝑡𝑡𝑡, the maximum utility of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is
denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) =
max{𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠):∀𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠 ’ ∧ 𝑠𝑠𝑠𝑠 ’ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠 ’ ⊆ 𝑠𝑠𝑠𝑠}.
The maximum utility of a sequence 𝑡𝑡𝑡𝑡 in a q-sequence
dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =
∑𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) :∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆.
For example, the maximum utility of the sequence 𝑡𝑡𝑡𝑡 =
⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩ in the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠1) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠2) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠3) +
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠4) = 24 + 16 + 19 + 13 = 72.

48 NAIS Journal

6

DDeeffiinniittiioonn 1122 ((HHiigghh uuttiilliittyy sseeqquueennttiiaall ppaatttteerrnn))
A sequence 𝑡𝑡𝑡𝑡 is said to be a high utility sequential
pattern if 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) ≥ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , where 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a
given user-specified minimum utility threshold. For
example, given 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 154 , the complete set of
HUSPs in the sequence dataset SDB is shown in Table
5.

Table 5: The set of HUSPs for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 154

HUSP utility HUSP utility
⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)⟩ 154 ⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 186

⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 159 ⟨(𝑔𝑔𝑔𝑔)⟩ 203
�(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)� 155 ⟨(𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 168

DDeeffiinniittiioonn 1133 ((SSuuppppoorrtt ooff aa ppaatttteerrnn))
Given a sequence 𝑡𝑡𝑡𝑡 and the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 =
{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛} , the support (or absolute support or
support.count) of the sequence 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is defined as
the number of q-sequences that contain 𝑡𝑡𝑡𝑡 and is
denoted by 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡). Mathematically, the support of 𝑡𝑡𝑡𝑡
is defined as 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) = |{𝑠𝑠𝑠𝑠|𝑠𝑠𝑠𝑠 ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵}|.
For example, 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)⟩) = |{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, 𝑠𝑠𝑠𝑠3, 𝑠𝑠𝑠𝑠4}| = 4
𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩) = |{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠3, 𝑠𝑠𝑠𝑠4}| = 3.

DDeeffiinniittiioonn 1144 ((FFrreeqquueenntt hhiigghh uuttiilliittyy sseeqquueennttiiaall
ppaatttteerrnnss))
Given a sequence 𝑡𝑡𝑡𝑡 and the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 =
{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛} , 𝑡𝑡𝑡𝑡 is said to be a frequent high utility
sequential pattern (FHUSP) if and only if 𝑡𝑡𝑡𝑡 is a HUSP
and 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) ≥ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, for a threshold 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 set by
the user.

DDeeffiinniittiioonn 1155 ((CClloosseedd ffrreeqquueenntt hhiigghh uuttiilliittyy sseeqquueennttiiaall
ppaatttteerrnnss))
Given a sequence 𝑡𝑡𝑡𝑡 and the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 =
{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛} , 𝑡𝑡𝑡𝑡 is said to be a closed frequent high
utility sequential pattern (CHUSP) if and only if 𝑡𝑡𝑡𝑡 is a
FHUSP and there exists no FHUSP that is a proper
super-sequence of 𝑡𝑡𝑡𝑡 and has the same support.
Mathematically, the set of all CHUSPs is defined by

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶 = {𝑠𝑠𝑠𝑠 ∈ 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠𝑠𝑠′ ∉ 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 𝑠𝑠𝑠𝑠
⊆ 𝑠𝑠𝑠𝑠′ ∧ 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)}

The goal of CHUSPM is to discover the set of CHUSPs
that satisfies Definition 15. For example, given

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=154, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=50% , the set of CHUSPs is
shown in Table 6.

Table 6: CHUSP for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 130, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%

CHUSP utility support
⟨(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 133 2
⟨(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 147 4
⟨(𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)⟩ 134 2
⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)⟩ 154 4

⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 159 2
⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 186 3

⟨(𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 148 3
⟨(𝑐𝑐𝑐𝑐)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩ 138 4

DDeeffiinniittiioonn 1166 ((UULLSS:: uuttiilliittyy lliisstt ssttrruuccttuurree))
Assume that a sequence 𝑡𝑡𝑡𝑡 has 𝑘𝑘𝑘𝑘(𝑘𝑘𝑘𝑘 > 0) ending q-
items 𝑖𝑖𝑖𝑖 in a q-sequence 𝑠𝑠𝑠𝑠 where 𝑖𝑖𝑖𝑖1 < 𝑖𝑖𝑖𝑖2 < ⋯ < 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘. The
ULS of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is a list of 𝑘𝑘𝑘𝑘 elements, where the
α𝑡𝑡𝑡𝑡ℎ(1 ≤ α ≤ 𝑘𝑘𝑘𝑘) element in the ULS contains:

⎩
⎨

⎧
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: the itemset 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆 of 𝑖𝑖𝑖𝑖α of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠
𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: the maximum utility of 𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼 in 𝑡𝑡𝑡𝑡
𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: a pointer pointing to either the

 (𝛼𝛼𝛼𝛼 + 1)𝑡𝑡𝑡𝑡ℎ element or null

DDeeffiinniittiioonn 1177 ((UUCCSS:: uuttiilliittyy cchhaaiinn ssttrruuccttuurree))
Given a sequence 𝑡𝑡𝑡𝑡 and q-sequence 𝑠𝑠𝑠𝑠. The 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in
𝑠𝑠𝑠𝑠 is denoted and defined as

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)

= �𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: is the prefix extension utility of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆: is the 𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆 of sequence 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠

DDeeffiinniittiioonn 1188 ((CCHHUUSS:: nnooddee ssttrruuccttuurre))
Given a sequence 𝑡𝑡𝑡𝑡, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is denoted
and defined as
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡)

= �
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: the set of sequence IDs containing 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵

𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆

)

DDeeffiinniittiioonn 1199 ((CCoonnccaatteennaattiioonn))
Given a sequence 𝑡𝑡𝑡𝑡 , there are two types of
concatenation of 𝑡𝑡𝑡𝑡:

NAIS Journal 49

7

� I − Extension: insert an item into the last itemset of 𝑡𝑡𝑡𝑡
S − Extension: add a new 1 − itemset at the end of 𝑡𝑡𝑡𝑡

For example, ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)⟩ and ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎)⟩ is generated by
performing an I-Extension and an S-Extension of the
sequence ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐)⟩, respectively.

DDeeffiinniittiioonn 2200 ((SSWWUU:: wweeiigghhtteedd sseeqquueennccee uuttiilliizzaattiioonn))
SWU of a sequence 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is defined as

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) = � 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′⊆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

For example, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(⟨𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩) = 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠1) + 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠2) + 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠3) +
𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠4)= 91 + 96 + 82 + 114 = 383.

TThheeoorreemm 11 ((SSeeqquueennccee wweeiigghhtteedd ddoowwnnwwaarrdd cclloossuurree
pprrooppeerrttyy)
Given 𝑡𝑡𝑡𝑡1 and 𝑡𝑡𝑡𝑡2 , if 𝑡𝑡𝑡𝑡2 contains 𝑡𝑡𝑡𝑡1 , then 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡2) ≤
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡1). Theorem 1 can be used to evaluate whether
an item is promising [5, 11, 14]. The CHUSP algorithm
also uses this theorem to prune all items with an
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 < 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.

DDeeffiinniittiioonn 2211 ((PPEEUU:: pprreeffiixx eexxtteennssiioonn uuttiilliittyy))
Given a sequence 𝑡𝑡𝑡𝑡 and 𝑠𝑠𝑠𝑠. The 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is denoted
and defined as
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) = max{𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠):∀𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 that is an ending
q-item of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠}

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠) = � 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠) > 0
0, otherwise

The 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is denoted and defined as:
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) = ∑ 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′⊆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Given 𝑡𝑡𝑡𝑡1 and 𝑡𝑡𝑡𝑡2 , if 𝑡𝑡𝑡𝑡2 contains 𝑡𝑡𝑡𝑡1 then 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡2) ≤
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡1).

DDeeffiinniittiioonn 2222 ((RRSSUU:: rreedduucceedd sseeqquueennccee uuttiilliittyy))
Given a sequence 𝑡𝑡𝑡𝑡 and 𝑠𝑠𝑠𝑠. The 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is denoted
and defined as:
𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)

= �𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡′)| 𝑡𝑡𝑡𝑡′ ⊆ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡1 ∼ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡1 ⊆ 𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠2 ∼ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡2 ⊆ 𝑠𝑠𝑠𝑠
0, otherwise

The RSU of the sequence 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is denoted and
defined as:

𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′⊆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Given 𝑡𝑡𝑡𝑡1 and 𝑡𝑡𝑡𝑡2 , if 𝑡𝑡𝑡𝑡2 contains 𝑡𝑡𝑡𝑡1 then 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡2) ≤
𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡1).

TThheeoorreemm 22 ((PPrruunniinngg ssttrraatteeggyy bbyy PPEEUU aanndd RRSSUU [2]))
Given a pattern 𝑡𝑡𝑡𝑡, 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) are considered
as upper bounds on the utility of 𝑡𝑡𝑡𝑡 and its descendants.
If 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) < 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 or 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) < 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , then 𝑡𝑡𝑡𝑡
and its descendants can be pruned from the search
space without affecting the result of the mining
process.

TThheeoorreemm 33 ((MMSSPP:: mmiinniimmuumm ssuuppppoorrtt--bbaasseedd pprruunniinngg))
Given a sequence 𝑡𝑡𝑡𝑡 , if 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) < 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , then the
sequence 𝑡𝑡𝑡𝑡 and its descendants are not CHUSP.

44.. PPrrooppoossaall AAllggoorriitthhmm

50 NAIS Journal

8

The pseudo-code of the CHUSP algorithm is shown

in Algorithm 1. The input is a q-sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵,
a sequence 𝑡𝑡𝑡𝑡 with its 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 structure, and two
predefined parameters: 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. First, a set
called 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is initialized to keep all CHUSPs.
We also use the ¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 to track all but not
closed high utility sequential patterns. The algorithm
scans 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 to calculate the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 of all items in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵
(line 3). It then selects all items with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 of
greater than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and builds the initial 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
structure and the lexicographic tree required by the
mining process. It also removes all items with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚
value less than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (line 4). The topmost node in
that tree is the root node, where its children are q-
sequences that contain a single item. Each node other
than the root stores a sequence 𝑡𝑡𝑡𝑡, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 structure
of 𝑡𝑡𝑡𝑡, utility matrices, remaining utility matrices, and
the list that contains sequence IDs called 𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 of
1 q-items in q-sequences of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵.
If 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) is less than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, then the algorithm will
consider 𝑡𝑡𝑡𝑡 as a leaf and will not expand the
lexicographic tree using node 𝑡𝑡𝑡𝑡, i.e., all its descendants
will be pruned (lines 5-6). In the next step, the
algorithm scans the projected dataset that includes
the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 to collect all items that can be
combined with 𝑡𝑡𝑡𝑡 to form a new sequence by I-
Extension or S-Extension (line 7). Each item with an
𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value lower than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is discarded from the
mining process (line 8). Then, the algorithm performs
a loop over all items in the iExts (lines 9-15) and sExts
(lines 16-22). For each item 𝑖𝑖𝑖𝑖 in the iExts, the
algorithm performs an I-Extension with this item to

form a new sequence 𝑡𝑡𝑡𝑡′ by inserting 𝑖𝑖𝑖𝑖 in the last
itemset of 𝑡𝑡𝑡𝑡 . In addition, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 structure,
𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , and the maximum utility of 𝑡𝑡𝑡𝑡′ are
constructed and calculated by extending the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of
𝑡𝑡𝑡𝑡 (lines 10-11). To reduce the search space and enhance
the mining process, CHUSP applies the MSP strategy
(Theorem 3) to discard non-frequent patterns (line 12).
If the condition returns true, CHUSP stops
considering these patterns and backtracks to the
previous step. Otherwise, the algorithm checks if the
pattern's utility value is greater than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. If yes,
the pattern is a high utility sequential pattern (line 13).
CHUSP calls the 𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 procedure to
check if that HUSP is closed (line 14).

The inputs of 𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 procedure are
two patterns 𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑡𝑡′ , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and ¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 .
Note that the sequence 𝑡𝑡𝑡𝑡′ is a super-sequence of 𝑡𝑡𝑡𝑡 by
performing the I-Extension or S-Extension
concatenation. We consider 𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑡𝑡′ as the previous
and current sequences since 𝑡𝑡𝑡𝑡′ is generated from 𝑡𝑡𝑡𝑡.
The procedure checks if the previous sequence 𝑡𝑡𝑡𝑡 is a
CHUSP by comparing its support count with the
support count of the current sequence 𝑡𝑡𝑡𝑡′. If the two
support values are equal, it means that 𝑡𝑡𝑡𝑡 is not a
CHUSP because it has a super-sequence with the
same support (break the Def. 15), then the procedure
checks if 𝑡𝑡𝑡𝑡 is in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, if yes then removes 𝑡𝑡𝑡𝑡 from
this set (line 3). The procedure also checks if 𝑡𝑡𝑡𝑡 is in
¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; if No, add 𝑡𝑡𝑡𝑡 into this set (line 4). The
purpose of this action is to track all non-candidate
sequences. During mining, 𝑡𝑡𝑡𝑡 may be extended to other
𝑡𝑡𝑡𝑡′ by doing other concatenations. In this case, 𝑡𝑡𝑡𝑡
involves in other checking procedures. The procedure
then inserts the current sequence 𝑡𝑡𝑡𝑡′ into the
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (line 5). It is worth noting that CHUSP is
a recursive algorithm. Thus, the current sequence 𝑡𝑡𝑡𝑡′
will be later called in other rounds of the algorithm to
extend itself. In other words, the sequence 𝑡𝑡𝑡𝑡′ is the
super-sequence of a sequence 𝑡𝑡𝑡𝑡 at this stage, but it will
be the sub-sequence of another sequence in another
stage. Thus, any sequences in the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 are
candidates and may be removed from the set when the
algorithm detects super-sequences having the same
support. If the supports of 𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑡𝑡′ are different, the
two patterns become candidates. The procedure adds
the current pattern 𝑡𝑡𝑡𝑡′ to the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 as a

NAIS Journal 51

9

candidate (line 8). Next, the procedure checks if the
previous sequence 𝑡𝑡𝑡𝑡 is in the ¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . If yes,
then it will not be a CHUSP candidate. Otherwise, 𝑡𝑡𝑡𝑡 is
inserted into 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

The CHUSP recursively calls itself to expand
𝑡𝑡𝑡𝑡′ (line 15). A similar process is performed for all items
in sExts. It passes a sequence and its projected dataset
to each recursive call as input parameters. The
sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 and lines 1-4 are used only for
initializing the algorithm and are not performed
during recursive calls. For each item in sExts, a new
pattern is generated by performing an S-Extension
(lines 16 to 22). When the algorithm completes
recursive calls, the algorithm traverses all patterns in
the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 to remove non-CHUSPs from this list
(line 23). Finally, it returns all CHUSPs as the output.

55.. EExxppeerriimmeennttaall RReessuullttss
Experiments were performed to evaluate the

performance of CHUSP on a computer with a 64-bit
Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, 12 GB of
RAM, running Windows 10 Enterprise LTSC. The
source code is publicly available on GitHub. All the
algorithms were implemented in 𝐶𝐶𝐶𝐶#. Fig. 1 shows the
user interface of the CHUSP algorithm. The proposed
algorithm was compared with two algorithms. The
first algorithm is the HUS-Span algorithm [2] for
mining HUSPs. The second algorithm is FHUSP, an
extension of HUS-Span for mining FHUSPs. The
performance of the three algorithms has been
compared on six real datasets. The characteristics of
these datasets are shown in Table 7. They are six real-
life datasets. They have varied characteristics, such
as sparse and dense datasets, short and long
sequences.

For each dataset, the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was decreased until
a clear winner was observed, or algorithms became too
long to execute. In some cases, a constraint on the
maximum length of CHUSP (𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ) was used to
speed up the experiments. For 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , a suitable
empirical value was chosen for each dataset to ensure
that the algorithms discovered a certain number of
CHUSPs. The 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 values for Sign, Kosarak10k,
BMSWebView1, BMSWebView2, Fifa and Bible were
set to 50%, 5%, 20%, 20%, 0.5%, 0.5%, respectively.

Table 7: Characteristics of the datasets

Dataset #Sequence #Item Avg. seq
length

Sign 800 310 51.99
Kosarak10k 10,000 10,094 8.14
BMSWebView1 59,601 497 2.51
BMSwebview2 77,512 3,340 4.62
Fifa 20,450 2,990 34.74
Bible 36,369 13,905 21.64

Figure 1: The CHUSP application

First, the execution time of CHUSP is compared
with HUS-Span and FHUSP. Fig. 2 shows that
CHUSP outperforms the compared algorithms on all
datasets. Each subfigure's vertical and horizontal axes
represent the execution time (milliseconds) and
minimum utility threshold values, respectively. In
general, for all datasets, when the minimum utility
threshold is decreased or when datasets contain more
sequences or longer sequences, the running time of the
algorithms increases. In that case, CHUSP can be
much more efficient than the two algorithms,
especially on Sign, Bible, BMSWebview1, and FIFA

52 NAIS Journal

10

datasets. On Sign (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%) CHUSP is
respectively up to 295.7, 250.3, 222.7, 188.9, 156.6,
125.9, 116.2, 75.8, 50.9, and 37.5 times faster than
HUS-Span for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 12,000 to 35,000 .
Compare with FHUSP, it is up to 292.72 , 245.01 ,
215.88, 188.51, 154.50, 118.80, 111.47, 73.24, 50.24,
and 35.94. On BMSWebView2 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%)
CHUSP is respectively up to 12.2, 8.9, 7.6, 6.3, 4.7,
3.4, 3.2, 2.1, 1.9, and 1.7 times faster than HUS-Span
for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000. It is respectively
up to 11.5, 8.0, 7.1, 5.8, 4.1, 3, 2.3, 1.8, 1.5, and 1.3
times faster than FHUSP. Similar results can be
observed for other datasets. The results indicate that
the MSP pruning strategy of CHUSP is effective and
can prune many non-frequent patterns. In addition,
the CHUS structure and pruning strategies are
suitable for mining CHUSPs. Thus, the algorithm can
facilitate the mining process and prune more non-
candidates than HUS-Span and FHUSP algorithms.

Second, the algorithms have also been compared in
terms of memory performance for the six datasets for
the same 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ values as
in the runtime experiment. Results are shown in Fig.
3 in terms of memory usage (vertical axes) for various
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values (horizontal axes). CHUSP consumes
less memory than HUS-Span in all cases. It means
that the CHUSP structure is more effective than the
structure used by the HUS-Span algorithm. In
addition, the MSP strategy can filter many non-
frequent candidates. CHUSP is also better than
FHUSP in most cases, although they are very close in
some cases. On FIFA and Bible, we can observe that
CHUSP performs much better than FHUSP. Except
for the BMSWebview1 dataset, FHUSP consumes less
memory than CHUSP on large 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values.
However, for low 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values, when the algorithms
need more time to mine patterns, CHUSP
outperforms FHUSP. Generally, for each dataset, the
memory usage increases when the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is
decreased, and it is also greater for larger datasets.

Finally, the number of patterns was measured for
various 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 threshold values on each dataset. In

Fig. 4, vertical axes denote the number of patterns,
and horizontal axes indicate the corresponding
maximum threshold values. The number of patterns
generated by CHUSP is much less than that of HUS-
Span and FHUSP for each dataset. On Sign
(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%), for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 12,000 to 35,000,
CHUSP found 62, 58, 51, 48, 41, 35, 31, 13, 5, and 3,
respectively. It can be observed that the number of
patterns by CHUSP is respectively up to 169.1, 121.2,
93.7, 68.2, 37.7, 21.5, 16.5, 7.3, 3.4, and 1.3 times less
than those found by HUS-Span. In addition, the
number of patterns by CHUSP is respectively up to
1.13, 1.09, 1.1, 1.04, 1.02, 1.03, 1.03, 1.08, 1.00, and
1.00 times less than those found by FHUSP. On
Kosarak10k (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 5%), the 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ was set
to 3 for the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values of 10,000 and 20,000 for
HUS-Span and FHUSP; for CHUSP, this parameter
was set to full. For 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000,
CHUSP found 21 , 14 , 10 , 5 , 3 , 2 , 2 , 2 , 1 , and 1
CHUSPs, respectively. It can be observed that the
number of patterns by CHUSP is respectively up to
3.9, 1.9, 1.4, 1.2, 1.3, 1.5, 1.5, 1.5, 2.0, and 2.0 times
less than those by HUS-Span. In addition, the number
of patterns by CHUSP is up to 1.4, 1.4, 1.2, 1.2, 1.3,
1.5 , 1.5 , 1.5 , 2.0 , and 2.0 times less than those by
FHUSP. On BMSwebview1 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.5%). The
𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ was set to 3 for HUS-Span and FHUSP;
for CHUSP, this parameter was set to full. For
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 5,000 to 35,000, CHUSP found 45, 42,
39, 38, 31, 18, 10, 3, 2, and 2 CHUSPs, respectively.
It can be observed that the number of patterns by
CHUSP is respectively up to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3,
3.4, 6, 7, and 5.5 times less than those by HUS-Span.
In addition, the number of patterns by CHUSP is up
to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3, 3.4, 6, 7, and 5.5 times
less than those by FHUSP. Similar results can be
observed for the BMSwebview1, FIFA, and BIBLE
datasets. These results indicate that the CHUSP
algorithm can eliminate many non-candidate patterns
from the search space and reduce the number of
patterns from the mining process.

NAIS Journal 53

10

datasets. On Sign (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%) CHUSP is
respectively up to 295.7, 250.3, 222.7, 188.9, 156.6,
125.9, 116.2, 75.8, 50.9, and 37.5 times faster than
HUS-Span for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 12,000 to 35,000 .
Compare with FHUSP, it is up to 292.72 , 245.01 ,
215.88, 188.51, 154.50, 118.80, 111.47, 73.24, 50.24,
and 35.94. On BMSWebView2 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%)
CHUSP is respectively up to 12.2, 8.9, 7.6, 6.3, 4.7,
3.4, 3.2, 2.1, 1.9, and 1.7 times faster than HUS-Span
for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000. It is respectively
up to 11.5, 8.0, 7.1, 5.8, 4.1, 3, 2.3, 1.8, 1.5, and 1.3
times faster than FHUSP. Similar results can be
observed for other datasets. The results indicate that
the MSP pruning strategy of CHUSP is effective and
can prune many non-frequent patterns. In addition,
the CHUS structure and pruning strategies are
suitable for mining CHUSPs. Thus, the algorithm can
facilitate the mining process and prune more non-
candidates than HUS-Span and FHUSP algorithms.

Second, the algorithms have also been compared in
terms of memory performance for the six datasets for
the same 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ values as
in the runtime experiment. Results are shown in Fig.
3 in terms of memory usage (vertical axes) for various
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values (horizontal axes). CHUSP consumes
less memory than HUS-Span in all cases. It means
that the CHUSP structure is more effective than the
structure used by the HUS-Span algorithm. In
addition, the MSP strategy can filter many non-
frequent candidates. CHUSP is also better than
FHUSP in most cases, although they are very close in
some cases. On FIFA and Bible, we can observe that
CHUSP performs much better than FHUSP. Except
for the BMSWebview1 dataset, FHUSP consumes less
memory than CHUSP on large 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values.
However, for low 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values, when the algorithms
need more time to mine patterns, CHUSP
outperforms FHUSP. Generally, for each dataset, the
memory usage increases when the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is
decreased, and it is also greater for larger datasets.

Finally, the number of patterns was measured for
various 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 threshold values on each dataset. In

Fig. 4, vertical axes denote the number of patterns,
and horizontal axes indicate the corresponding
maximum threshold values. The number of patterns
generated by CHUSP is much less than that of HUS-
Span and FHUSP for each dataset. On Sign
(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%), for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 12,000 to 35,000,
CHUSP found 62, 58, 51, 48, 41, 35, 31, 13, 5, and 3,
respectively. It can be observed that the number of
patterns by CHUSP is respectively up to 169.1, 121.2,
93.7, 68.2, 37.7, 21.5, 16.5, 7.3, 3.4, and 1.3 times less
than those found by HUS-Span. In addition, the
number of patterns by CHUSP is respectively up to
1.13, 1.09, 1.1, 1.04, 1.02, 1.03, 1.03, 1.08, 1.00, and
1.00 times less than those found by FHUSP. On
Kosarak10k (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 5%), the 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ was set
to 3 for the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values of 10,000 and 20,000 for
HUS-Span and FHUSP; for CHUSP, this parameter
was set to full. For 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000,
CHUSP found 21 , 14 , 10 , 5 , 3 , 2 , 2 , 2 , 1 , and 1
CHUSPs, respectively. It can be observed that the
number of patterns by CHUSP is respectively up to
3.9, 1.9, 1.4, 1.2, 1.3, 1.5, 1.5, 1.5, 2.0, and 2.0 times
less than those by HUS-Span. In addition, the number
of patterns by CHUSP is up to 1.4, 1.4, 1.2, 1.2, 1.3,
1.5 , 1.5 , 1.5 , 2.0 , and 2.0 times less than those by
FHUSP. On BMSwebview1 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.5%). The
𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ was set to 3 for HUS-Span and FHUSP;
for CHUSP, this parameter was set to full. For
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 5,000 to 35,000, CHUSP found 45, 42,
39, 38, 31, 18, 10, 3, 2, and 2 CHUSPs, respectively.
It can be observed that the number of patterns by
CHUSP is respectively up to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3,
3.4, 6, 7, and 5.5 times less than those by HUS-Span.
In addition, the number of patterns by CHUSP is up
to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3, 3.4, 6, 7, and 5.5 times
less than those by FHUSP. Similar results can be
observed for the BMSwebview1, FIFA, and BIBLE
datasets. These results indicate that the CHUSP
algorithm can eliminate many non-candidate patterns
from the search space and reduce the number of
patterns from the mining process.

11

Figure 2: Runtimes for various minimum utility threshold values

Figure 3: Memory usage for various minimum utility threshold values

54 NAIS Journal

12

Figure 4: Number of patterns for various minimum utility threshold values

66.. CCoonncclluussiioonn
This paper proposed an algorithm named CHUSP

for mining closed high utility sequential patterns. The
proposed algorithm uses the CHUS structure for
efficiently mining CHUSP. Experimental results
indicate that CHUSP outperforms HUS-Span and
FHUSP algorithms in terms of execution time and
memory usage. The number of patterns generated by
the three algorithms was also measured for various
minimum utility threshold values. The results show
that all the pruning strategies used in CHUSP can
eliminate many non-CHUSP and thus speed up the
mining process. In future work, we will design a
parallel framework that can enhance the
computational cost of CHUSP and extend the pattern
mining framework for other tasks [14, 19, 25–27].

RReeffeerreenncceess

1. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm
for mining high utility sequential patterns. In:

Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp.
660–668 (2012).

2. Wang, J.-Z., Huang, J.-L., Chen, Y.-C.: On efficiently
mining high utility sequential patterns. Knowl Inf Syst.
49, 597–627 (2016).

3. Le, B., Huynh, U., Dinh, D.-T.: A pure array structure
and parallel strategy for high-utility sequential pattern
mining. Expert Syst Appl. 104, 107–120 (2018).

4. Gan, W., Lin, J.C.-W., Zhang, J., Chao, H.-C., Fujita, H.,
Philip, S.Y.: ProUM: Projection-based utility mining on
sequence data. Inf Sci (N Y). 513, 222–240 (2020).

5. Dinh, T., Quang, M.N., Le, B.: A novel approach for
hiding high utility sequential patterns. In: Proceedings
of the 6th International Symposium on Information and
Communication Technology. pp. 121–128 (2015).

6. Le, B., Dinh, D.-T., Huynh, V.-N., Nguyen, Q.-M.,
Fournier-Viger, P.: An efficient algorithm for hiding high
utility sequential patterns. International Journal of
Approximate Reasoning. 95, 77–92 (2018).

7. Huynh, U., Le, B., Dinh, D.-T., Fujita, H.: Multi-core
parallel algorithms for hiding high-utility sequential

13

patterns. Knowl Based Syst. 237, 107793 (2022).
8. Wang, J., Han, J.: BIDE: Efficient mining of frequent

closed sequences. In: Proceedings. 20th international
conference on data engineering. pp. 79–90 (2004).

9. Truong, T., Duong, H., Le, B., Fournier-Viger, P.:
FMaxCloHUSM: An efficient algorithm for mining
frequent closed and maximal high utility sequences.
Eng Appl Artif Intell. 85, 1–20 (2019).

10. Fournier-Viger, P., Lin, J.C.-W., Dinh, T., Le, H.B.:
Mining correlated high-utility itemsets using the bond
measure. In: International Conference on Hybrid
Artificial Intelligence Systems. pp. 53–65 (2016).

11. Dinh, T., Huynh, V.-N., Le, B.: Mining Periodic High
Utility Sequential Patterns. In: Asian Conference on
Intelligent Information and Database Systems. pp.
545–555 (2017).

12. Quang, M.N., Dinh, T., Huynh, U., Le, B.: MHHUSP:
An integrated algorithm for mining and Hiding High
Utility Sequential Patterns. In: Proceedings of the 8th
International Conference on Knowledge and Systems
Engineering. pp. 13–18 (2016).

13. Huynh, U., Le, B., Dinh, D.-T.: Hiding periodic high-
utility sequential patterns. In: Periodic Pattern Mining.
pp. 171–189. Springer (2021).

14. Dinh, D.-T., Le, B., Fournier-Viger, P., Huynh, V.-N.: An
efficient algorithm for mining periodic high-utility
sequential patterns. Applied Intelligence. 48, 4694–
4714 (2018).

15. Quang, M.N., Huynh, U., Dinh, T., Le, N.H., Le, B.: An
Approach to Decrease Execution Time and Difference
for Hiding High Utility Sequential Patterns. In:
Proceedings of the 5th International Symposium on
Integrated Uncertainty in Knowledge Modelling and
Decision Making. pp. 435–446 (2016).

16. Dinh, D.-T., Huynh, V.-N., Le, B., Fournier-Viger, P.,
Huynh, U., Nguyen, Q.-M.: A survey of privacy
preserving utility mining. In: High-Utility Pattern
Mining. pp. 207–232. Springer (2019).

17. Huynh, U., Le, B., Dinh, D.-T., Huynh, V.-N.: Mining
periodic high-utility sequential patterns with negative
unit profits. In: Periodic Pattern Mining. pp. 153–170.
Springer (2021).

18. Xie, S., Zhao, L.: An efficient algorithm for mining stable
periodic high-utility sequential patterns. Symmetry
(Basel). 14, 2032 (2022).

19. Fournier-Viger, P., Wu, Y., Dinh, D.-T., Song, W., Lin,

J.C.-W.: Discovering periodic high utility itemsets in a
discrete sequence. In: Periodic Pattern Mining. pp. 133–
151. Springer (2021).

20. Fournier-Viger, P., Zhang, Y., Lin, J.C.-W., Dinh, D.-T.,
Bac Le, H.: Mining correlated high-utility itemsets
using various measures. Log J IGPL. 28, 19–32 (2020).

21. Truong-Chi, T., Fournier-Viger, P.: A survey of high
utility sequential pattern mining. In: High-Utility
Pattern Mining. pp. 97–129. Springer (2019).

22. Lin, J.C.-W., Li, Y., Fournier-Viger, P., Djenouri, Y.,
Zhang, J.: Efficient chain structure for high-utility
sequential pattern mining. IEEE Access. 8, 40714–
40722 (2020).

23. Gupta, S.K., others: HUFTI-SPM: high-utility and
frequent time-interval sequential pattern mining from
transactional databases. Int J Data Sci Anal. 13, 239–
250 (2022).

24. Ni, X., Wang, M., Xiao, G., Wang, G.: Frequent high-
utility sequential pattern mining algorithm for
integrated architecture design of multi-platform
mission system. Aerospace Systems. 1–17 (2022).

25. Dinh, D.-T., Fujinami, T., Huynh, V.-N.: Estimating the
optimal number of clusters in categorical data
clustering by silhouette coefficient. In: International
Symposium on Knowledge and Systems Sciences. pp.
1–17 (2019).

26. Dinh, D.-T., Huynh, V.-N., Sriboonchitta, S.: Clustering
mixed numerical and categorical data with missing
values. Inf Sci (N Y). 571, 418–442 (2021).

27. Dinh, D.-T., Huynh, V.-N.: k-PbC: an improved cluster
center initialization for categorical data clustering.
Applied Intelligence. 1–23 (2020).

著者紹介

DDiinnhh DDuuyy TTaaii
Assistant Professor, The Kyoto College of
Graduate Studies for Informatics.

PPhhiilliippppee FFoouurrnniieerr--VViiggeerr
Professor, College of Computer Science and
Software Engineering, Shenzhen University.

HHuuyynnhh VVaann HHoonngg
Lecturer, Ho Chi Minh University of Natural
Resources and Environment.

NAIS Journal 55

12

Figure 4: Number of patterns for various minimum utility threshold values

66.. CCoonncclluussiioonn
This paper proposed an algorithm named CHUSP

for mining closed high utility sequential patterns. The
proposed algorithm uses the CHUS structure for
efficiently mining CHUSP. Experimental results
indicate that CHUSP outperforms HUS-Span and
FHUSP algorithms in terms of execution time and
memory usage. The number of patterns generated by
the three algorithms was also measured for various
minimum utility threshold values. The results show
that all the pruning strategies used in CHUSP can
eliminate many non-CHUSP and thus speed up the
mining process. In future work, we will design a
parallel framework that can enhance the
computational cost of CHUSP and extend the pattern
mining framework for other tasks [14, 19, 25–27].

RReeffeerreenncceess

1. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm
for mining high utility sequential patterns. In:

Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp.
660–668 (2012).

2. Wang, J.-Z., Huang, J.-L., Chen, Y.-C.: On efficiently
mining high utility sequential patterns. Knowl Inf Syst.
49, 597–627 (2016).

3. Le, B., Huynh, U., Dinh, D.-T.: A pure array structure
and parallel strategy for high-utility sequential pattern
mining. Expert Syst Appl. 104, 107–120 (2018).

4. Gan, W., Lin, J.C.-W., Zhang, J., Chao, H.-C., Fujita, H.,
Philip, S.Y.: ProUM: Projection-based utility mining on
sequence data. Inf Sci (N Y). 513, 222–240 (2020).

5. Dinh, T., Quang, M.N., Le, B.: A novel approach for
hiding high utility sequential patterns. In: Proceedings
of the 6th International Symposium on Information and
Communication Technology. pp. 121–128 (2015).

6. Le, B., Dinh, D.-T., Huynh, V.-N., Nguyen, Q.-M.,
Fournier-Viger, P.: An efficient algorithm for hiding high
utility sequential patterns. International Journal of
Approximate Reasoning. 95, 77–92 (2018).

7. Huynh, U., Le, B., Dinh, D.-T., Fujita, H.: Multi-core
parallel algorithms for hiding high-utility sequential

13

patterns. Knowl Based Syst. 237, 107793 (2022).
8. Wang, J., Han, J.: BIDE: Efficient mining of frequent

closed sequences. In: Proceedings. 20th international
conference on data engineering. pp. 79–90 (2004).

9. Truong, T., Duong, H., Le, B., Fournier-Viger, P.:
FMaxCloHUSM: An efficient algorithm for mining
frequent closed and maximal high utility sequences.
Eng Appl Artif Intell. 85, 1–20 (2019).

10. Fournier-Viger, P., Lin, J.C.-W., Dinh, T., Le, H.B.:
Mining correlated high-utility itemsets using the bond
measure. In: International Conference on Hybrid
Artificial Intelligence Systems. pp. 53–65 (2016).

11. Dinh, T., Huynh, V.-N., Le, B.: Mining Periodic High
Utility Sequential Patterns. In: Asian Conference on
Intelligent Information and Database Systems. pp.
545–555 (2017).

12. Quang, M.N., Dinh, T., Huynh, U., Le, B.: MHHUSP:
An integrated algorithm for mining and Hiding High
Utility Sequential Patterns. In: Proceedings of the 8th
International Conference on Knowledge and Systems
Engineering. pp. 13–18 (2016).

13. Huynh, U., Le, B., Dinh, D.-T.: Hiding periodic high-
utility sequential patterns. In: Periodic Pattern Mining.
pp. 171–189. Springer (2021).

14. Dinh, D.-T., Le, B., Fournier-Viger, P., Huynh, V.-N.: An
efficient algorithm for mining periodic high-utility
sequential patterns. Applied Intelligence. 48, 4694–
4714 (2018).

15. Quang, M.N., Huynh, U., Dinh, T., Le, N.H., Le, B.: An
Approach to Decrease Execution Time and Difference
for Hiding High Utility Sequential Patterns. In:
Proceedings of the 5th International Symposium on
Integrated Uncertainty in Knowledge Modelling and
Decision Making. pp. 435–446 (2016).

16. Dinh, D.-T., Huynh, V.-N., Le, B., Fournier-Viger, P.,
Huynh, U., Nguyen, Q.-M.: A survey of privacy
preserving utility mining. In: High-Utility Pattern
Mining. pp. 207–232. Springer (2019).

17. Huynh, U., Le, B., Dinh, D.-T., Huynh, V.-N.: Mining
periodic high-utility sequential patterns with negative
unit profits. In: Periodic Pattern Mining. pp. 153–170.
Springer (2021).

18. Xie, S., Zhao, L.: An efficient algorithm for mining stable
periodic high-utility sequential patterns. Symmetry
(Basel). 14, 2032 (2022).

19. Fournier-Viger, P., Wu, Y., Dinh, D.-T., Song, W., Lin,

J.C.-W.: Discovering periodic high utility itemsets in a
discrete sequence. In: Periodic Pattern Mining. pp. 133–
151. Springer (2021).

20. Fournier-Viger, P., Zhang, Y., Lin, J.C.-W., Dinh, D.-T.,
Bac Le, H.: Mining correlated high-utility itemsets
using various measures. Log J IGPL. 28, 19–32 (2020).

21. Truong-Chi, T., Fournier-Viger, P.: A survey of high
utility sequential pattern mining. In: High-Utility
Pattern Mining. pp. 97–129. Springer (2019).

22. Lin, J.C.-W., Li, Y., Fournier-Viger, P., Djenouri, Y.,
Zhang, J.: Efficient chain structure for high-utility
sequential pattern mining. IEEE Access. 8, 40714–
40722 (2020).

23. Gupta, S.K., others: HUFTI-SPM: high-utility and
frequent time-interval sequential pattern mining from
transactional databases. Int J Data Sci Anal. 13, 239–
250 (2022).

24. Ni, X., Wang, M., Xiao, G., Wang, G.: Frequent high-
utility sequential pattern mining algorithm for
integrated architecture design of multi-platform
mission system. Aerospace Systems. 1–17 (2022).

25. Dinh, D.-T., Fujinami, T., Huynh, V.-N.: Estimating the
optimal number of clusters in categorical data
clustering by silhouette coefficient. In: International
Symposium on Knowledge and Systems Sciences. pp.
1–17 (2019).

26. Dinh, D.-T., Huynh, V.-N., Sriboonchitta, S.: Clustering
mixed numerical and categorical data with missing
values. Inf Sci (N Y). 571, 418–442 (2021).

27. Dinh, D.-T., Huynh, V.-N.: k-PbC: an improved cluster
center initialization for categorical data clustering.
Applied Intelligence. 1–23 (2020).

著者紹介

DDiinnhh DDuuyy TTaaii
Assistant Professor, The Kyoto College of
Graduate Studies for Informatics.

PPhhiilliippppee FFoouurrnniieerr--VViiggeerr
Professor, College of Computer Science and
Software Engineering, Shenzhen University.

HHuuyynnhh VVaann HHoonngg
Lecturer, Ho Chi Minh University of Natural
Resources and Environment.

◆著者紹介

Dinh Duy Tai
Assistant Professor, The Kyoto College of Graduate
Studies for Informatics.

Philippe Fournier-Viger
Professor, College of Computer Science and Software
Engineering, Shenzhen University.

Huynh Van Hong
Lecturer, Ho Chi Minh University of Natural Resources
and Environment.

