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AAbbssttrraacctt  
 
High utility sequential pattern mining (HUSPM) aims to mine all patterns that yield a high utility (profit) in a 
sequence dataset. HUSPM is useful for several applications such as market basket analysis, marketing, and 
website clickstream analysis. In these applications, users may also consider high utility patterns frequently 
appearing in the dataset to obtain more fruitful information. However, this task is high computation since 
algorithms may generate a combinatorial explosive number of candidates that may be redundant or of low 
importance. To reduce complexity and obtain a compact set of frequent high utility sequential patterns (FHUSPs), 
this paper proposes an algorithm named CHUSP for mining closed frequent high utility sequential patterns 
(CHUSPs). Such patterns keep a concise representation while preserving the same expressive power of the 
complete set of FHUSPs. The proposed algorithm relies on a CHUS data structure to maintain information during 
mining. It uses three pruning strategies to eliminate early low-utility and non-frequent patterns, thereby reducing 
the search space. An extensive experimental evaluation was performed on six real-life datasets to evaluate the 
performance of CHUSP in terms of execution time, memory usage, and the number of generated patterns. 
Experimental results show that CHUSP can efficiently discover the compact set of CHUSPs under different user-
defined thresholds. 
 
KKeeyywwoorrddss: data mining, high utility sequential patterns, closed high utility sequential patterns 
 
11.. IInnttrroodduuccttiioonn 
 

Frequent high utility sequential pattern mining 
(FHUSPM) finds sequential patterns with high utility 
and frequently appear in sequence datasets. Such 
patterns appear commonly in various real-life 
applications such as market basket analysis, web- site 
clickstream analysis, customer behavior analysis, and 
stock market analysis. In market basket analysis, 
when analyzing customer transactions, a retail store 
manager may be interested in finding the high utility 
patterns that appear regularly and have a high sale 
volume. Detecting these purchase patterns is useful 
for understanding customers’ behavior and thus 
adopting effective sales and marketing strategies. For 
example, high-end electronic devices and jewelry may 
generate more profit than many daily-life products. 
However, they may be sold infrequently, and their 

sales volumes may greatly fluctuate. Suppose retailers 
know that some products yield a high profit and are 
frequently purchased; they can change business 
strategies for these items to increase sales and 
improve inventory management. In marketing, 
marketers want to know some sets of products 
frequently sold with high revenue. They can better 
understand customers’ preferences and then design 
efficient marketing strategies. In website clickstream 
analysis, the number of clicks or time spent on each 
web page or user interface (UI) element can be viewed 
as the quantities of items in sequences. Thus, 
administrators can discover the elements where users 
spend most of their time. Based on that, 
administrators can improve functions and UI to suit 
these important behaviors better.  

Although the problem of HUSPM and its 
extensions have been studied in several previous 
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studies [1–7], these algorithms discover a full set of 
HUSPs requiring exponential complexity. Therefore, 
in this paper, we extend the concept of closed patterns 
from frequent sequential pattern mining [8] for 
HUSPM. A closed (frequent) high utility sequential 
pattern (CHUSP) is a HUSP having no proper super-
sequences that are HUSPs and appear in the same 
number of sequences. Such patterns are also 
meaningful for real-life applications since they are the 
largest FHUSPs common to groups of customers. 
Detecting the largest sets of items yielding high profit 
and frequently sold supports sellers to understand 
better what customers need, adapt their business and 
marketing strategies, and improve their services. 
There is a work [9] focusing on this topic in literature. 
However, the computational complexity of this 
algorithm is still high. In addition, the experimental 
evaluation was conducted on small-scale datasets 
which a few differences in characteristics. Last, this 
work did not provide the application accompanying its 
proposed algorithms. 

The above observations motivated the design of an 
efficient algorithm that can mine CHUSPs. Generally, 
we highlighted the major contributions and 
innovations of this paper as follows: 
− We proposed an efficient pattern-growth-based 

algorithm named CHUSP to discover the set of 
CHUSPs interesting for some tasks. CHUSP 
mines the patterns from the dataset in a divide-
and-conquer approach. It first derives the set of 
size-1 quantitative sequences, and for each 
sequence p, it derives p’s conditional (or projected) 
dataset by partitioning it and recursively mining 
the projected dataset. An innovation of the CHUSP 
is that the algorithm checks the “closed” property 
of the generated pattern at each round of the 
mining process. Thanks to this property, at the end 
of the mining process, we obtain a small set of 
CHUSPs. The algorithm uses three pruning 
strategies to eliminate early low-utility and non-
frequent patterns. Thus, the algorithm achieves 
good performances on large-scale datasets. 

− An extensive experiment was conducted on real 
datasets to evaluate the performance of CHUSP in 
terms of runtime, memory usage, and the number 
of generated patterns. Experimental results show 

that CHUSP can efficiently discover all CHUSPs. 
In addition, its performance is independent of the 
datasets’ characteristics if they contain utility 
information, i.e., it can work on both quantitative 
transaction and quantitative sequence datasets. 

− We provide the application of CHUSP. The 
application can be used for any dataset if its format 
matches the input requirement. 
 

The rest of this paper is organized as follows. Section 
2 reviews related work; section 3 introduces the 
preliminaries; section 4 describes the proposed 
CHUSP algorithm; section 5 shows a comparative 
experiment; section 6 concludes and outlines the 
direction for future work. 
 

22.. RReellaatteedd  WWoorrkk  
  

High utility sequential patterns mining aims to 
find all sequential patterns with a utility greater than 
or equal to a minimum utility threshold minUtil in a 
sequence dataset. HUSPM is quite challenging as the 
utility measure is neither monotone nor anti-
monotone, unlike the support measure traditionally 
used in SPM. Numerous algorithms have been 
proposed for HUSPM, and its extension [1–7, 10–20]. 
A thorough survey of HUSPM can be found in this 
work [21]. Yin et al. [1] proposed an algorithm named 
USpan for HUSPM. This algorithm builds a 
lexicographic q-sequence tree (LQS-Tree) to maintain 
all generated sequences during the mining process. In 
addition, it uses two concatenation mechanisms: I-
Concatenation and S-Concatenation, in combination 
with two pruning strategies: width and depth pruning. 
Wang et al. [2] proposed an algorithm named HUS-
Span. The algorithm uses a utility-chain structure to 
represent the search space of HUSPM. It also 
introduces two tight utility upper bounds: prefix 
extension utility (PEU) and reduced sequence utility 
(RSU), as well as two companion pruning strategies to 
identify HUSPs. The experimental evaluation showed 
that HUS-Span outperforms USpan in terms of 
execution time. The reason is that by using PEU and 
RSU, HUS-Span can generate fewer candidates than 
USpan. 

Le et al. [3] proposed two algorithms, AHUS and 
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studies [1–7], these algorithms discover a full set of 
HUSPs requiring exponential complexity. Therefore, 
in this paper, we extend the concept of closed patterns 
from frequent sequential pattern mining [8] for 
HUSPM. A closed (frequent) high utility sequential 
pattern (CHUSP) is a HUSP having no proper super-
sequences that are HUSPs and appear in the same 
number of sequences. Such patterns are also 
meaningful for real-life applications since they are the 
largest FHUSPs common to groups of customers. 
Detecting the largest sets of items yielding high profit 
and frequently sold supports sellers to understand 
better what customers need, adapt their business and 
marketing strategies, and improve their services. 
There is a work [9] focusing on this topic in literature. 
However, the computational complexity of this 
algorithm is still high. In addition, the experimental 
evaluation was conducted on small-scale datasets 
which a few differences in characteristics. Last, this 
work did not provide the application accompanying its 
proposed algorithms. 

The above observations motivated the design of an 
efficient algorithm that can mine CHUSPs. Generally, 
we highlighted the major contributions and 
innovations of this paper as follows: 
− We proposed an efficient pattern-growth-based 

algorithm named CHUSP to discover the set of 
CHUSPs interesting for some tasks. CHUSP 
mines the patterns from the dataset in a divide-
and-conquer approach. It first derives the set of 
size-1 quantitative sequences, and for each 
sequence p, it derives p’s conditional (or projected) 
dataset by partitioning it and recursively mining 
the projected dataset. An innovation of the CHUSP 
is that the algorithm checks the “closed” property 
of the generated pattern at each round of the 
mining process. Thanks to this property, at the end 
of the mining process, we obtain a small set of 
CHUSPs. The algorithm uses three pruning 
strategies to eliminate early low-utility and non-
frequent patterns. Thus, the algorithm achieves 
good performances on large-scale datasets. 

− An extensive experiment was conducted on real 
datasets to evaluate the performance of CHUSP in 
terms of runtime, memory usage, and the number 
of generated patterns. Experimental results show 

that CHUSP can efficiently discover all CHUSPs. 
In addition, its performance is independent of the 
datasets’ characteristics if they contain utility 
information, i.e., it can work on both quantitative 
transaction and quantitative sequence datasets. 

− We provide the application of CHUSP. The 
application can be used for any dataset if its format 
matches the input requirement. 
 

The rest of this paper is organized as follows. Section 
2 reviews related work; section 3 introduces the 
preliminaries; section 4 describes the proposed 
CHUSP algorithm; section 5 shows a comparative 
experiment; section 6 concludes and outlines the 
direction for future work. 
 

22.. RReellaatteedd  WWoorrkk  
  

High utility sequential patterns mining aims to 
find all sequential patterns with a utility greater than 
or equal to a minimum utility threshold minUtil in a 
sequence dataset. HUSPM is quite challenging as the 
utility measure is neither monotone nor anti-
monotone, unlike the support measure traditionally 
used in SPM. Numerous algorithms have been 
proposed for HUSPM, and its extension [1–7, 10–20]. 
A thorough survey of HUSPM can be found in this 
work [21]. Yin et al. [1] proposed an algorithm named 
USpan for HUSPM. This algorithm builds a 
lexicographic q-sequence tree (LQS-Tree) to maintain 
all generated sequences during the mining process. In 
addition, it uses two concatenation mechanisms: I-
Concatenation and S-Concatenation, in combination 
with two pruning strategies: width and depth pruning. 
Wang et al. [2] proposed an algorithm named HUS-
Span. The algorithm uses a utility-chain structure to 
represent the search space of HUSPM. It also 
introduces two tight utility upper bounds: prefix 
extension utility (PEU) and reduced sequence utility 
(RSU), as well as two companion pruning strategies to 
identify HUSPs. The experimental evaluation showed 
that HUS-Span outperforms USpan in terms of 
execution time. The reason is that by using PEU and 
RSU, HUS-Span can generate fewer candidates than 
USpan. 

Le et al. [3] proposed two algorithms, AHUS and 
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AHUS-P. The algorithms use a pure array structure 
(PAS) to represent sequences. This data structure is 
very compact and contains sufficient information on 
sequences. Thus, it can reduce memory usage and 
effectively support the mining process. Moreover, the 
two algorithms use two upper bounds to prune the 
search space. AHUS-P uses a parallel mining strategy 
to discover patterns concurrently by sharing the 
search space with multiple processors. Each processor 
independently performs its mining task and does not 
wait for other tasks. AHUS-P is more efficient than 
the serial AHUS algorithm for large-scale datasets. 
Lin et al. [22] proposed a sequence-utility (SU)-Chain 
algorithm for HUSPM. A lexicographic enumeration 
(LE)-tree is used in the algorithm to represent the 
search space for promising candidates. The projecting 
approach is used to accelerate the progress of 
generating promising candidates. In addition, 
multiple pruning strategies are used to identify 
information not relevant to the mining progress. 

For frequent high utility sequential pattern mining, 
Gupta et al. [23] proposed a hybrid pattern growth-
based algorithm named HUFTI-SPM to mine 
sequential patterns satisfying both frequency and 
utility thresholds. It uses support–utility table to 
maintain information on support and utility at various 
time intervals. It uses sequence support as the 
downward closure property to reduce the search space. 
Ni et al. [24] proposed an algorithm named FHUSOM 
to mine the architecture design requirements from the 
operational scenario data. The algorithm uses a data 
structure called FHUDS to keep all patterns and 
combines four pruning strategies called SWU, PEU, 
RSU, and MFP to reduce the search space. The 
algorithm supports the design of an integrated multi-
platform mission system (MPMS) architect and is 
efficient in the process of integrated architecture 
design. 

For closed high utility sequential pattern mining, 
Truong et al. [9] proposed an algorithm named 
FMaxCloHUSM to mine the set of frequent maximal 
and closed high utility sequences. The algorithm uses 
width and depth pruning strategies to remove low 
utility sequences and a novel local pruning strategy 
named LPCHUS to remove non-closed and non-
maximal high utility sequences. FMaxCloHUSM uses 

a data structure called SIDUL to represent the dataset 
in a vertical format and calculate utility information of 
sequences and their extensions. 

 
33..  PPrreelliimmiinnaarriieess    
 

Given a set of m  distinct items I = {𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖2, … , 𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚} . A 
quantitative item (q-item) is a pair of the form (𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) 
where i ∈ 𝐼𝐼𝐼𝐼  and q is a positive number representing 
how many units of this item were purchased (internal 
utility). The quantity of a q-item i in s is denoted as 
q(𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠) . Each item 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ∈ 𝐼𝐼𝐼𝐼  (1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚)  is associated 
with a weight denoted as p(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘) representing the unit 
profit or importance (external utility) of 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 . A 
quantitative itemset (q-itemset) X =
[(𝑖𝑖𝑖𝑖1, 𝑞𝑞𝑞𝑞1)(𝑖𝑖𝑖𝑖2, 𝑞𝑞𝑞𝑞2) … (𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘)]  is a set of one or more q-
items where �𝑖𝑖𝑖𝑖𝑗𝑗𝑗𝑗 , 𝑞𝑞𝑞𝑞𝑗𝑗𝑗𝑗�  is a q-item(1 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑘𝑘𝑘𝑘) . In the 
following, brackets are omitted for brevity if a q-
itemset contains only one q-item. In addition, without 
loss of generality, assume that q-items in a q-itemset 
are sorted according to the lexicographical order such 
as a  ≺ 𝑏𝑏𝑏𝑏  ≺ 𝑐𝑐𝑐𝑐  ≺ 𝑑𝑑𝑑𝑑  ≺ 𝑒𝑒𝑒𝑒  ≺ 𝑓𝑓𝑓𝑓  ≺ 𝑔𝑔𝑔𝑔. A quantitative 
sequence (q-sequence) s is an ordered list of q-itemsets 
s = ⟨𝐼𝐼𝐼𝐼1𝐼𝐼𝐼𝐼2 … 𝐼𝐼𝐼𝐼𝑙𝑙𝑙𝑙⟩ where 𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗 ≤ 𝑙𝑙𝑙𝑙)  is a q-itemset. A 
quantitative sequence dataset is a set of n q-sequences 
SDB = {𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛},  where each sequence 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈
𝑆𝑆𝑆𝑆 (1 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛) is a subset of I, and sid is its unique 
identifier. 
For example, Table 1 shows the items and their 
respective unit profits appearing in an online retail 
store. In this example, the external utility of each item 
a, b, c, d, e, f, g are 2, 5, 3, 4, 6, 1, 7, respectively. 
Table 2 shows five shopping q-sequences with 
quantities, having the sequence identifiers (sid) 1 to 5 
(denoted 𝑠𝑠𝑠𝑠1 to 𝑠𝑠𝑠𝑠5). Each q-sequence comprises one or 
more transactions (q-itemsets). Each transaction in a 
q-sequence has a unique transaction identifier tid, and 
consists of one or many q-items.  
The q-sequence 𝑠𝑠𝑠𝑠4  contains three q-itemsets 
[(𝑏𝑏𝑏𝑏, 1)𝑐𝑐𝑐𝑐(1)(𝑒𝑒𝑒𝑒, 2)(𝑔𝑔𝑔𝑔, 5)],   [(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 4)(𝑓𝑓𝑓𝑓, 2)]  and 
[(𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)]  in which the internal utility of q-
item e in the first, second and third q-itemsets are 2, 4 
and 2, respectively. We use the notation 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 to refer to 
the occurrence of the item i  in the tid − th 
transactions of a q-sequence. In 𝑠𝑠𝑠𝑠2 , the notation 𝑐𝑐𝑐𝑐1 
means that the q-item c appears in the first q-itemset 
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of 𝑠𝑠𝑠𝑠2 , that is (𝑐𝑐𝑐𝑐, 2), while 𝑐𝑐𝑐𝑐3  represents (𝑐𝑐𝑐𝑐, 1) in the 
third q-itemset of 𝑠𝑠𝑠𝑠2, and 𝑐𝑐𝑐𝑐1 ≺ 𝑐𝑐𝑐𝑐3 in 𝑠𝑠𝑠𝑠2. 
 

Table 1: External utility values 
 

item a b c d e f g 
unit profit 2 5 3 4 6 1 7 

 
Table 2: External utility values 

 

sid  tid  transactions  tu  su  

1  
1  (𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)  51  

108  2  (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)  22  
3  (𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2)  35  

2  
1  (𝑐𝑐𝑐𝑐, 2)(𝑒𝑒𝑒𝑒, 1)  12  

110  2  (𝑎𝑎𝑎𝑎, 2)(𝑏𝑏𝑏𝑏, 2)(𝑓𝑓𝑓𝑓, 5)  19  
3  (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 4)(𝑔𝑔𝑔𝑔, 6)  79  

3  

1  (𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)  25  

91  2  (𝑐𝑐𝑐𝑐, 3)(𝑑𝑑𝑑𝑑, 2)(𝑔𝑔𝑔𝑔, 3)  38  
3  (𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 1)  16  
4  (𝑑𝑑𝑑𝑑, 3)  12  

4  
1  (𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)(𝑔𝑔𝑔𝑔, 5)  55  

122 2  (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 4)(𝑓𝑓𝑓𝑓, 2)  42  
3  (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)  25  

5  1  (𝑎𝑎𝑎𝑎, 4)(𝑑𝑑𝑑𝑑, 2)(𝑓𝑓𝑓𝑓, 2)(𝑔𝑔𝑔𝑔, 10)  88  88  

 
DDeeffiinniittiioonn  11  ((TThhee  ssiizzee  aanndd  lleennggtthh  ooff  aa  qq--sseeqquueennccee)) The 
size of 𝑠𝑠𝑠𝑠 is the number of q-itemsets it contains. The 
length of s is the number of q-items in 𝑠𝑠𝑠𝑠 . In other 
words, 𝑠𝑠𝑠𝑠 is called k-sequence if and only if there are k 

q-items in 𝑠𝑠𝑠𝑠, i.e., |𝑠𝑠𝑠𝑠| = 𝑘𝑘𝑘𝑘, where |𝑠𝑠𝑠𝑠| = ∑ �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗�𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗⊆𝑠𝑠𝑠𝑠  and �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗� 

is the total number of q-items in the q-itemset 𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗. For 
example, the size and length of 𝑠𝑠𝑠𝑠4 in Table 1 are 3 and 
11, respectively. 
 
DDeeffiinniittiioonn  22  ((qq--iitteemmsseett  ccoonnttaaiinnmmeenntt))  

Let 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 = ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚��  and 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 =

��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏1 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏1��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏2 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏2�… �𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′ , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′��  be two q-itemsets, 

where 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚)  and 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘′ ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘′ ≤ 𝑚𝑚𝑚𝑚′) . 

If there exist positive integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤

𝑚𝑚𝑚𝑚′, such that 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2 =

𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 , … , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚  then 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏  is said to 

contain 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 , denoted as 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 ⊆ 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 . For example, q-
itemset [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] in 𝑠𝑠𝑠𝑠3 contains (𝑎𝑎𝑎𝑎, 1), (𝑏𝑏𝑏𝑏, 1), 
(𝑒𝑒𝑒𝑒, 3) , [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)] , [(𝑎𝑎𝑎𝑎, 1)(𝑒𝑒𝑒𝑒, 3)] , [(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] , 
[(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)]. 
 
DDeeffiinniittiioonn  33  ((qq--ssuubbsseeqquueennccee)) 
Given q-sequences 𝐴𝐴𝐴𝐴 = ⟨𝐴𝐴𝐴𝐴1𝐴𝐴𝐴𝐴2 …𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛⟩  and 𝐵𝐵𝐵𝐵 =
⟨𝐵𝐵𝐵𝐵1𝐵𝐵𝐵𝐵2 …𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛′⟩(𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′) , where 𝐴𝐴𝐴𝐴α,𝐵𝐵𝐵𝐵β  are q-itemsets 
(1 ≤ α ≤ 𝑛𝑛𝑛𝑛, 1 ≤ β ≤ 𝑛𝑛𝑛𝑛′) . If there exists positive 
integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′ , such that 𝐴𝐴𝐴𝐴1 ⊆
𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗1 ,𝐴𝐴𝐴𝐴2 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗2 , … ,𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛, then 𝐴𝐴𝐴𝐴 is a q-subsequence of 
𝐵𝐵𝐵𝐵  and 𝐵𝐵𝐵𝐵  is a q-supersequence of 𝐴𝐴𝐴𝐴 , denoted as 𝐴𝐴𝐴𝐴 ⊆
𝐵𝐵𝐵𝐵. For example, ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]⟩  and 
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]⟩ are q-subsequences of 𝑠𝑠𝑠𝑠1. 
 
DDeeffiinniittiioonn  44  ((UUttiilliittyy  ooff  aa  qq--sseeqquueennccee))  
The utility of an (𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) in 𝑠𝑠𝑠𝑠 is denoted and defined as 
𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) × 𝑞𝑞𝑞𝑞(𝑖𝑖𝑖𝑖). The utility of a q-itemset 𝑋𝑋𝑋𝑋 in 𝑠𝑠𝑠𝑠 
is denoted and defined as 𝑢𝑢𝑢𝑢(𝑋𝑋𝑋𝑋) = ∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘)𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 . The 
utility of 𝑠𝑠𝑠𝑠  is denoted and defined as 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠) =

∑ 𝑢𝑢𝑢𝑢�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1 .  

For example, the utility of 𝑔𝑔𝑔𝑔 in 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) = 7 × 5 =
35. The utility of [(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]  in 𝑠𝑠𝑠𝑠1  is 
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) =  𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 5) + 𝑢𝑢𝑢𝑢(𝑐𝑐𝑐𝑐, 2) + 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) =
2 × 5+3 × 2+7 × 5 = 51. The utility of 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠1) = 
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) + u ([(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]) +
𝑢𝑢𝑢𝑢([(𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2)]) = 51 + 22 + 35 = 108. 
 
DDeeffiinniittiioonn  55  ((UUttiilliittyy  mmaattrriixx)) 
A utility matrix of 𝑠𝑠𝑠𝑠 is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛 matrix, where 𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑛𝑛 
are the number of q-items and q-itemsets 
(transactions) in 𝑠𝑠𝑠𝑠 , respectively. The element at the 
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗) (0  ≤ 𝑘𝑘𝑘𝑘  <  𝑚𝑚𝑚𝑚,  0  ≤ 𝑗𝑗𝑗𝑗  <  𝑛𝑛𝑛𝑛) of the utility 
matrix stores the utility 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) of the q-item (𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) in 
the q-itemset 𝑗𝑗𝑗𝑗. Table 3 shows the utility matrix of 𝑠𝑠𝑠𝑠3 
for the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 depicted in Table 2. 
 
DDeeffiinniittiioonn  66  ((RReemmaaiinniinngg  uuttiilliittyy)) 
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ where 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 = 

��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘1 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘1��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘2 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘2�… �𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚��  is a q-itemset of s. 

The remaining utility of q-item 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 in s is denoted and 

5 
 

defined as 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 , 𝑠𝑠𝑠𝑠� =∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖′)𝑠𝑠𝑠𝑠′∈𝑠𝑠𝑠𝑠∧𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚≺𝑠𝑠𝑠𝑠
′ . For example, 

the values 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎1, 𝑠𝑠𝑠𝑠3) , 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏1, 𝑠𝑠𝑠𝑠3)  and 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏3, 𝑠𝑠𝑠𝑠3)  are 
respectively equal to 89, 84 and 18. 

 

Table 3: The utility matrix of 𝑠𝑠𝑠𝑠3 
 

item tid1 tid2 tid3 tid4 
a 2 0 0 0 
b 5 0 10 0 
c 0 9 0 0 
d 0 8 0 12 
e 18 0 6 0 
g 0 21 0 0 

 
Table 4: The remaining utility matrix of 𝑠𝑠𝑠𝑠3 

 

item tid1 tid2 tid3 tid4 
a 89 0 0 0 
b 84 0 18 0 
c 0 57 0 0 
d 0 49 0 0 
e 66 0 12 0 
g 0 28 0 0 

 
DDeeffiinniittiioonn  77  ((RReemmaaiinniinngg  uuttiilliittyy  mmaattrriixx)) 
The remaining utility matrix of 𝑠𝑠𝑠𝑠  is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛  matrix, 
where 𝑚𝑚𝑚𝑚  and 𝑛𝑛𝑛𝑛  are the number of q-items and q-
itemsets (transactions) in 𝑠𝑠𝑠𝑠 . The element at the 
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗)(0 ≤ 𝑘𝑘𝑘𝑘 <  𝑚𝑚𝑚𝑚, 0 ≤ 𝑗𝑗𝑗𝑗 <  𝑛𝑛𝑛𝑛)  of the 
remaining utility matrix stores the 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) of q-item 
(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) in q-itemset j. For example, Table 4 shows the 
remaining utility matrix of 𝑠𝑠𝑠𝑠3. 
 
DDeeffiinniittiioonn  88  ((MMaattcchhiinngg)) 
Given 𝑠𝑠𝑠𝑠  = ⟨(𝑖𝑖𝑖𝑖1, 𝑞𝑞𝑞𝑞1)(𝑖𝑖𝑖𝑖2, 𝑞𝑞𝑞𝑞2) … (𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛, 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛)⟩  and a sequence 
𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩, 𝑠𝑠𝑠𝑠 is said to match 𝑡𝑡𝑡𝑡 if and only if 𝑛𝑛𝑛𝑛 =
𝑚𝑚𝑚𝑚 and 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 for 1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛, denoted as t ∼ 𝑠𝑠𝑠𝑠. 
For example, sequence ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⟩ matches 
𝑠𝑠𝑠𝑠1. Note that because of quantities, two q-items may 
be considered different, although they contain the 
same item. Hence there could be multiple q-
subsequences of a q-sequence matching a given 

sequence. For instance, sequence ⟨(𝑒𝑒𝑒𝑒)⟩  matches 
respectively the q-subsequence ⟨(𝑒𝑒𝑒𝑒, 3)⟩ and ⟨(𝑒𝑒𝑒𝑒, 1)⟩ in 
the first and third q-itemsets of 𝑠𝑠𝑠𝑠3 . Sequence ⟨[𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐]⟩ 
matches both the q-subsequences ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)]⟩ and 
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑐𝑐𝑐𝑐, 3)]⟩ of 𝑠𝑠𝑠𝑠1. 
 
DDeeffiinniittiioonn  99  ((EEnnddiinngg  qq--iitteemm  mmaaxxiimmuumm  uuttiilliittyy) 
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩  where 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗 ≤
𝑛𝑛𝑛𝑛) is a q-itemset and a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩. If any 
q-subsequence 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = �𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎2 …𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚�  (𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ∼

𝑡𝑡𝑡𝑡) where 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚= ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚��, then 

�𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚� is called the ending q-item of sequence 𝑡𝑡𝑡𝑡 in 

𝑠𝑠𝑠𝑠. The ending q-item maximum utility of a sequence 𝑡𝑡𝑡𝑡 
in 𝑠𝑠𝑠𝑠  is denoted and defined as 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠)  = 
 max { 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)|𝑠𝑠𝑠𝑠′ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠′ ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠′}. 
For example, the ending q-items of 𝑡𝑡𝑡𝑡 = ⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩  in 𝑠𝑠𝑠𝑠3 are 
𝑑𝑑𝑑𝑑2, 𝑑𝑑𝑑𝑑4 and their ending q-item maximum utility are 
𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑2, 𝑠𝑠𝑠𝑠3) = max(13) = 13 and 𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑4, 𝑠𝑠𝑠𝑠3) = 
max(17,22) = 22, respectively. 
 
DDeeffiinniittiioonn  1100  ((SSeeqquueennccee  uuttiilliittyy)) 
The sequence utility of a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩ in 
𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩  is denoted and defined as 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) = 
⋃ 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡∧𝑠𝑠𝑠𝑠′⊆𝑠𝑠𝑠𝑠 . The utility of t in the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is 
denoted and defined as a utility set: 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) = ⋃ 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆 . 
For example, the utility of 𝑡𝑡𝑡𝑡 = ⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩  in 𝑠𝑠𝑠𝑠1  is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1) 
= {𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 1)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 3)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 3)(𝑏𝑏𝑏𝑏, 3)⟩)} 
= {11,  21,  24} . The utility of 𝑡𝑡𝑡𝑡  in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) =
{𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠2), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠3),𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠4)} = {11,  21,  24, 
16,  16,  19,  13,  13}. 
 
DDeeffiinniittiioonn  1111  ((SSeeqquueennccee  mmaaxxiimmuumm  uuttiilliittyy)) 
Given a sequence 𝑡𝑡𝑡𝑡, the maximum utility of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is 
denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) =
max{𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠):∀𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠 ’ ∧ 𝑠𝑠𝑠𝑠 ’ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠 ’ ⊆ 𝑠𝑠𝑠𝑠}.  
The maximum utility of a sequence 𝑡𝑡𝑡𝑡 in a q-sequence 
dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  is denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡)  = 
∑𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) :∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆.  
For example, the maximum utility of the sequence 𝑡𝑡𝑡𝑡 = 
⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩   in the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  is 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠1) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠2) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠3) +
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠4)  = 24 +  16 +  19 +  13 =  72. 
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of 𝑠𝑠𝑠𝑠2 , that is (𝑐𝑐𝑐𝑐, 2), while 𝑐𝑐𝑐𝑐3  represents (𝑐𝑐𝑐𝑐, 1) in the 
third q-itemset of 𝑠𝑠𝑠𝑠2, and 𝑐𝑐𝑐𝑐1 ≺ 𝑐𝑐𝑐𝑐3 in 𝑠𝑠𝑠𝑠2. 
 

Table 1: External utility values 
 

item a b c d e f g 
unit profit 2 5 3 4 6 1 7 

 
Table 2: External utility values 

 

sid  tid  transactions  tu  su  

1  
1  (𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)  51  

108  2  (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)  22  
3  (𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2)  35  

2  
1  (𝑐𝑐𝑐𝑐, 2)(𝑒𝑒𝑒𝑒, 1)  12  

110  2  (𝑎𝑎𝑎𝑎, 2)(𝑏𝑏𝑏𝑏, 2)(𝑓𝑓𝑓𝑓, 5)  19  
3  (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 4)(𝑔𝑔𝑔𝑔, 6)  79  

3  

1  (𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)  25  

91  2  (𝑐𝑐𝑐𝑐, 3)(𝑑𝑑𝑑𝑑, 2)(𝑔𝑔𝑔𝑔, 3)  38  
3  (𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 1)  16  
4  (𝑑𝑑𝑑𝑑, 3)  12  

4  
1  (𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)(𝑔𝑔𝑔𝑔, 5)  55  

122 2  (𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 2)(𝑒𝑒𝑒𝑒, 4)(𝑓𝑓𝑓𝑓, 2)  42  
3  (𝑏𝑏𝑏𝑏, 2)(𝑐𝑐𝑐𝑐, 1)(𝑒𝑒𝑒𝑒, 2)  25  

5  1  (𝑎𝑎𝑎𝑎, 4)(𝑑𝑑𝑑𝑑, 2)(𝑓𝑓𝑓𝑓, 2)(𝑔𝑔𝑔𝑔, 10)  88  88  

 
DDeeffiinniittiioonn  11  ((TThhee  ssiizzee  aanndd  lleennggtthh  ooff  aa  qq--sseeqquueennccee)) The 
size of 𝑠𝑠𝑠𝑠 is the number of q-itemsets it contains. The 
length of s is the number of q-items in 𝑠𝑠𝑠𝑠 . In other 
words, 𝑠𝑠𝑠𝑠 is called k-sequence if and only if there are k 

q-items in 𝑠𝑠𝑠𝑠, i.e., |𝑠𝑠𝑠𝑠| = 𝑘𝑘𝑘𝑘, where |𝑠𝑠𝑠𝑠| = ∑ �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗�𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗⊆𝑠𝑠𝑠𝑠  and �𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗� 

is the total number of q-items in the q-itemset 𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗. For 
example, the size and length of 𝑠𝑠𝑠𝑠4 in Table 1 are 3 and 
11, respectively. 
 
DDeeffiinniittiioonn  22  ((qq--iitteemmsseett  ccoonnttaaiinnmmeenntt))  

Let 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 = ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚��  and 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 =

��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏1 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏1��𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏2 , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏2�… �𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′ , 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚′��  be two q-itemsets, 

where 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑚𝑚𝑚𝑚)  and 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘′ ∈ 𝐼𝐼𝐼𝐼(1 ≤ 𝑘𝑘𝑘𝑘′ ≤ 𝑚𝑚𝑚𝑚′) . 

If there exist positive integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ≤

𝑚𝑚𝑚𝑚′, such that 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗1 , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2 =

𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗2 , … , 𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑖𝑖𝑖𝑖𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚 ∧ 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗𝑚𝑚𝑚𝑚  then 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏  is said to 

contain 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 , denoted as 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎 ⊆ 𝑋𝑋𝑋𝑋𝑏𝑏𝑏𝑏 . For example, q-
itemset [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] in 𝑠𝑠𝑠𝑠3 contains (𝑎𝑎𝑎𝑎, 1), (𝑏𝑏𝑏𝑏, 1), 
(𝑒𝑒𝑒𝑒, 3) , [(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)] , [(𝑎𝑎𝑎𝑎, 1)(𝑒𝑒𝑒𝑒, 3)] , [(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)] , 
[(𝑎𝑎𝑎𝑎, 1)(𝑏𝑏𝑏𝑏, 1)(𝑒𝑒𝑒𝑒, 3)]. 
 
DDeeffiinniittiioonn  33  ((qq--ssuubbsseeqquueennccee)) 
Given q-sequences 𝐴𝐴𝐴𝐴 = ⟨𝐴𝐴𝐴𝐴1𝐴𝐴𝐴𝐴2 …𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛⟩  and 𝐵𝐵𝐵𝐵 =
⟨𝐵𝐵𝐵𝐵1𝐵𝐵𝐵𝐵2 …𝐵𝐵𝐵𝐵𝑛𝑛𝑛𝑛′⟩(𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′) , where 𝐴𝐴𝐴𝐴α,𝐵𝐵𝐵𝐵β  are q-itemsets 
(1 ≤ α ≤ 𝑛𝑛𝑛𝑛, 1 ≤ β ≤ 𝑛𝑛𝑛𝑛′) . If there exists positive 
integers 1 ≤ 𝑗𝑗𝑗𝑗1 ≤ 𝑗𝑗𝑗𝑗2 ≤ ⋯ ≤ 𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛′ , such that 𝐴𝐴𝐴𝐴1 ⊆
𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗1 ,𝐴𝐴𝐴𝐴2 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗2 , … ,𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛 ⊆ 𝐵𝐵𝐵𝐵𝑗𝑗𝑗𝑗𝑛𝑛𝑛𝑛, then 𝐴𝐴𝐴𝐴 is a q-subsequence of 
𝐵𝐵𝐵𝐵  and 𝐵𝐵𝐵𝐵  is a q-supersequence of 𝐴𝐴𝐴𝐴 , denoted as 𝐴𝐴𝐴𝐴 ⊆
𝐵𝐵𝐵𝐵. For example, ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]⟩  and 
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]⟩ are q-subsequences of 𝑠𝑠𝑠𝑠1. 
 
DDeeffiinniittiioonn  44  ((UUttiilliittyy  ooff  aa  qq--sseeqquueennccee))  
The utility of an (𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) in 𝑠𝑠𝑠𝑠 is denoted and defined as 
𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖, 𝑞𝑞𝑞𝑞) = 𝑝𝑝𝑝𝑝(𝑖𝑖𝑖𝑖) × 𝑞𝑞𝑞𝑞(𝑖𝑖𝑖𝑖). The utility of a q-itemset 𝑋𝑋𝑋𝑋 in 𝑠𝑠𝑠𝑠 
is denoted and defined as 𝑢𝑢𝑢𝑢(𝑋𝑋𝑋𝑋) = ∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘)𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘=1 . The 
utility of 𝑠𝑠𝑠𝑠  is denoted and defined as 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠) =

∑ 𝑢𝑢𝑢𝑢�𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗�𝑛𝑛𝑛𝑛
𝑗𝑗𝑗𝑗=1 .  

For example, the utility of 𝑔𝑔𝑔𝑔 in 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) = 7 × 5 =
35. The utility of [(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]  in 𝑠𝑠𝑠𝑠1  is 
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) =  𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎, 5) + 𝑢𝑢𝑢𝑢(𝑐𝑐𝑐𝑐, 2) + 𝑢𝑢𝑢𝑢(𝑔𝑔𝑔𝑔, 5) =
2 × 5+3 × 2+7 × 5 = 51. The utility of 𝑠𝑠𝑠𝑠1 is 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠1) = 
𝑢𝑢𝑢𝑢([(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)(𝑔𝑔𝑔𝑔, 5)]) + u ([(𝑎𝑎𝑎𝑎, 3)(𝑏𝑏𝑏𝑏, 1)(𝑐𝑐𝑐𝑐, 3)(𝑓𝑓𝑓𝑓, 2)]) +
𝑢𝑢𝑢𝑢([(𝑏𝑏𝑏𝑏, 3)(𝑑𝑑𝑑𝑑, 2)(𝑒𝑒𝑒𝑒, 2)]) = 51 + 22 + 35 = 108. 
 
DDeeffiinniittiioonn  55  ((UUttiilliittyy  mmaattrriixx)) 
A utility matrix of 𝑠𝑠𝑠𝑠 is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛 matrix, where 𝑚𝑚𝑚𝑚 and 𝑛𝑛𝑛𝑛 
are the number of q-items and q-itemsets 
(transactions) in 𝑠𝑠𝑠𝑠 , respectively. The element at the 
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗) (0  ≤ 𝑘𝑘𝑘𝑘  <  𝑚𝑚𝑚𝑚,  0  ≤ 𝑗𝑗𝑗𝑗  <  𝑛𝑛𝑛𝑛) of the utility 
matrix stores the utility 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) of the q-item (𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 ,𝑞𝑞𝑞𝑞) in 
the q-itemset 𝑗𝑗𝑗𝑗. Table 3 shows the utility matrix of 𝑠𝑠𝑠𝑠3 
for the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 depicted in Table 2. 
 
DDeeffiinniittiioonn  66  ((RReemmaaiinniinngg  uuttiilliittyy)) 
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩ where 𝑋𝑋𝑋𝑋𝑘𝑘𝑘𝑘 = 

��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘1 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘1��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘2 , 𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘2�… �𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 ,𝑞𝑞𝑞𝑞𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚��  is a q-itemset of s. 

The remaining utility of q-item 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 in s is denoted and 

5 
 

defined as 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢�𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚 , 𝑠𝑠𝑠𝑠� =∑ 𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖′)𝑠𝑠𝑠𝑠′∈𝑠𝑠𝑠𝑠∧𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚≺𝑠𝑠𝑠𝑠
′ . For example, 

the values 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑎𝑎𝑎𝑎1, 𝑠𝑠𝑠𝑠3) , 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏1, 𝑠𝑠𝑠𝑠3)  and 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑏𝑏𝑏𝑏3, 𝑠𝑠𝑠𝑠3)  are 
respectively equal to 89, 84 and 18. 

 

Table 3: The utility matrix of 𝑠𝑠𝑠𝑠3 
 

item tid1 tid2 tid3 tid4 
a 2 0 0 0 
b 5 0 10 0 
c 0 9 0 0 
d 0 8 0 12 
e 18 0 6 0 
g 0 21 0 0 

 
Table 4: The remaining utility matrix of 𝑠𝑠𝑠𝑠3 

 

item tid1 tid2 tid3 tid4 
a 89 0 0 0 
b 84 0 18 0 
c 0 57 0 0 
d 0 49 0 0 
e 66 0 12 0 
g 0 28 0 0 

 
DDeeffiinniittiioonn  77  ((RReemmaaiinniinngg  uuttiilliittyy  mmaattrriixx)) 
The remaining utility matrix of 𝑠𝑠𝑠𝑠  is 𝑚𝑚𝑚𝑚 × 𝑛𝑛𝑛𝑛  matrix, 
where 𝑚𝑚𝑚𝑚  and 𝑛𝑛𝑛𝑛  are the number of q-items and q-
itemsets (transactions) in 𝑠𝑠𝑠𝑠 . The element at the 
position (𝑘𝑘𝑘𝑘, 𝑗𝑗𝑗𝑗)(0 ≤ 𝑘𝑘𝑘𝑘 <  𝑚𝑚𝑚𝑚, 0 ≤ 𝑗𝑗𝑗𝑗 <  𝑛𝑛𝑛𝑛)  of the 
remaining utility matrix stores the 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) of q-item 
(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑞𝑞𝑞𝑞) in q-itemset j. For example, Table 4 shows the 
remaining utility matrix of 𝑠𝑠𝑠𝑠3. 
 
DDeeffiinniittiioonn  88  ((MMaattcchhiinngg)) 
Given 𝑠𝑠𝑠𝑠  = ⟨(𝑖𝑖𝑖𝑖1, 𝑞𝑞𝑞𝑞1)(𝑖𝑖𝑖𝑖2, 𝑞𝑞𝑞𝑞2) … (𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛, 𝑞𝑞𝑞𝑞𝑛𝑛𝑛𝑛)⟩  and a sequence 
𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩, 𝑠𝑠𝑠𝑠 is said to match 𝑡𝑡𝑡𝑡 if and only if 𝑛𝑛𝑛𝑛 =
𝑚𝑚𝑚𝑚 and 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 = 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘 for 1 ≤ 𝑘𝑘𝑘𝑘 ≤ 𝑛𝑛𝑛𝑛, denoted as t ∼ 𝑠𝑠𝑠𝑠. 
For example, sequence ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⟩ matches 
𝑠𝑠𝑠𝑠1. Note that because of quantities, two q-items may 
be considered different, although they contain the 
same item. Hence there could be multiple q-
subsequences of a q-sequence matching a given 

sequence. For instance, sequence ⟨(𝑒𝑒𝑒𝑒)⟩  matches 
respectively the q-subsequence ⟨(𝑒𝑒𝑒𝑒, 3)⟩ and ⟨(𝑒𝑒𝑒𝑒, 1)⟩ in 
the first and third q-itemsets of 𝑠𝑠𝑠𝑠3 . Sequence ⟨[𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐]⟩ 
matches both the q-subsequences ⟨[(𝑎𝑎𝑎𝑎, 5)(𝑐𝑐𝑐𝑐, 2)]⟩ and 
⟨[(𝑎𝑎𝑎𝑎, 3)(𝑐𝑐𝑐𝑐, 3)]⟩ of 𝑠𝑠𝑠𝑠1. 
 
DDeeffiinniittiioonn  99  ((EEnnddiinngg  qq--iitteemm  mmaaxxiimmuumm  uuttiilliittyy) 
Given a sequence 𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩  where 𝑋𝑋𝑋𝑋𝑗𝑗𝑗𝑗(1 ≤ 𝑗𝑗𝑗𝑗 ≤
𝑛𝑛𝑛𝑛) is a q-itemset and a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩. If any 
q-subsequence 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎 = �𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎1𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎2 …𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚�  (𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎  ∼

𝑡𝑡𝑡𝑡) where 𝑋𝑋𝑋𝑋𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚= ��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎1 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎1��𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎2 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎2�… �𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚��, then 

�𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚 , 𝑞𝑞𝑞𝑞𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚� is called the ending q-item of sequence 𝑡𝑡𝑡𝑡 in 

𝑠𝑠𝑠𝑠. The ending q-item maximum utility of a sequence 𝑡𝑡𝑡𝑡 
in 𝑠𝑠𝑠𝑠  is denoted and defined as 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠)  = 
 max { 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)|𝑠𝑠𝑠𝑠′ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠′ ⊆ 𝑠𝑠𝑠𝑠 ∧ 𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠′}. 
For example, the ending q-items of 𝑡𝑡𝑡𝑡 = ⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩  in 𝑠𝑠𝑠𝑠3 are 
𝑑𝑑𝑑𝑑2, 𝑑𝑑𝑑𝑑4 and their ending q-item maximum utility are 
𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑2, 𝑠𝑠𝑠𝑠3) = max(13) = 13 and 𝑢𝑢𝑢𝑢(⟨𝑏𝑏𝑏𝑏𝑑𝑑𝑑𝑑⟩,𝑑𝑑𝑑𝑑4, 𝑠𝑠𝑠𝑠3) = 
max(17,22) = 22, respectively. 
 
DDeeffiinniittiioonn  1100  ((SSeeqquueennccee  uuttiilliittyy)) 
The sequence utility of a sequence 𝑡𝑡𝑡𝑡 = ⟨𝑡𝑡𝑡𝑡1𝑡𝑡𝑡𝑡2 … 𝑡𝑡𝑡𝑡𝑚𝑚𝑚𝑚⟩ in 
𝑠𝑠𝑠𝑠 = ⟨𝑋𝑋𝑋𝑋1𝑋𝑋𝑋𝑋2 …𝑋𝑋𝑋𝑋𝑛𝑛𝑛𝑛⟩  is denoted and defined as 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) = 
⋃ 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡∧𝑠𝑠𝑠𝑠′⊆𝑠𝑠𝑠𝑠 . The utility of t in the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is 
denoted and defined as a utility set: 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) = ⋃ 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆 . 
For example, the utility of 𝑡𝑡𝑡𝑡 = ⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩  in 𝑠𝑠𝑠𝑠1  is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1) 
= {𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 1)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 2)(𝑏𝑏𝑏𝑏, 3)⟩),𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐, 3)(𝑏𝑏𝑏𝑏, 3)⟩)} 
= {11,  21,  24} . The utility of 𝑡𝑡𝑡𝑡  in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  is 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡) =
{𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠1), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠2), 𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠3),𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠4)} = {11,  21,  24, 
16,  16,  19,  13,  13}. 
 
DDeeffiinniittiioonn  1111  ((SSeeqquueennccee  mmaaxxiimmuumm  uuttiilliittyy)) 
Given a sequence 𝑡𝑡𝑡𝑡, the maximum utility of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is 
denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) =
max{𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠):∀𝑖𝑖𝑖𝑖 ∈ 𝑠𝑠𝑠𝑠 ’ ∧ 𝑠𝑠𝑠𝑠 ’ ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠 ’ ⊆ 𝑠𝑠𝑠𝑠}.  
The maximum utility of a sequence 𝑡𝑡𝑡𝑡 in a q-sequence 
dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  is denoted and defined as 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡)  = 
∑𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) :∀𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆.  
For example, the maximum utility of the sequence 𝑡𝑡𝑡𝑡 = 
⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩   in the sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  is 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) =
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠1) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠2) + 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠3) +
𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(⟨𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏⟩, 𝑠𝑠𝑠𝑠4)  = 24 +  16 +  19 +  13 =  72. 
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DDeeffiinniittiioonn  1122  ((HHiigghh  uuttiilliittyy  sseeqquueennttiiaall  ppaatttteerrnn)) 
A sequence 𝑡𝑡𝑡𝑡  is said to be a high utility sequential 
pattern if 𝑢𝑢𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) ≥  𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  , where 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is a 
given user-specified minimum utility threshold. For 
example, given 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = 154 , the complete set of 
HUSPs in the sequence dataset SDB is shown in Table 
5. 
 

Table 5: The set of HUSPs for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 154 
 

HUSP  utility HUSP utility 
⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)⟩  154  ⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  186  

⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  159  ⟨(𝑔𝑔𝑔𝑔)⟩ 203  
�(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)� 155  ⟨(𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  168  

 
DDeeffiinniittiioonn  1133  ((SSuuppppoorrtt  ooff  aa  ppaatttteerrnn)) 
Given a sequence 𝑡𝑡𝑡𝑡  and the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  = 
{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛} , the support (or absolute support or 
support.count) of the sequence 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is defined as 
the number of q-sequences that contain 𝑡𝑡𝑡𝑡  and is 
denoted by 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡). Mathematically, the support of 𝑡𝑡𝑡𝑡 
is defined as 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡)  =  |{𝑠𝑠𝑠𝑠|𝑠𝑠𝑠𝑠 ∼ 𝑡𝑡𝑡𝑡 ∧ 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵}|.  
For example, 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)⟩) = |{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, 𝑠𝑠𝑠𝑠3, 𝑠𝑠𝑠𝑠4}| = 4 
𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩) = |{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠3, 𝑠𝑠𝑠𝑠4}| = 3. 
 
DDeeffiinniittiioonn  1144  ((FFrreeqquueenntt  hhiigghh  uuttiilliittyy  sseeqquueennttiiaall  
ppaatttteerrnnss)) 
Given a sequence 𝑡𝑡𝑡𝑡  and the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  = 
{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛} , 𝑡𝑡𝑡𝑡  is said to be a frequent high utility 
sequential pattern (FHUSP) if and only if 𝑡𝑡𝑡𝑡 is a HUSP 
and 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡) ≥ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, for a threshold 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 set by 
the user. 
 
DDeeffiinniittiioonn  1155  ((CClloosseedd  ffrreeqquueenntt  hhiigghh  uuttiilliittyy  sseeqquueennttiiaall  
ppaatttteerrnnss)) 
Given a sequence 𝑡𝑡𝑡𝑡  and the dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  = 
{𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, … , 𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛} , 𝑡𝑡𝑡𝑡  is said to be a closed frequent high 
utility sequential pattern (CHUSP) if and only if 𝑡𝑡𝑡𝑡 is a 
FHUSP and there exists no FHUSP that is a proper 
super-sequence of 𝑡𝑡𝑡𝑡  and has the same support. 
Mathematically, the set of all CHUSPs is defined by  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶 = {𝑠𝑠𝑠𝑠 ∈ 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝑠𝑠𝑠𝑠′ ∉ 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶: 𝑠𝑠𝑠𝑠 
⊆ 𝑠𝑠𝑠𝑠′ ∧ 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠′)} 

The goal of CHUSPM is to discover the set of CHUSPs 
that satisfies Definition 15. For example, given 

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=154, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖=50% , the set of CHUSPs is 
shown in Table 6. 
 

Table 6: CHUSP for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 130, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50% 
 

CHUSP  utility support 
⟨(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  133  2  
⟨(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  147  4  
⟨(𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)⟩  134  2  
⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)⟩  154  4  

⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  159  2  
⟨(𝑐𝑐𝑐𝑐𝑔𝑔𝑔𝑔)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  186  3  

⟨(𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  148  3  
⟨(𝑐𝑐𝑐𝑐)(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩  138  4  

 
DDeeffiinniittiioonn  1166  ((UULLSS::  uuttiilliittyy  lliisstt  ssttrruuccttuurree)) 
Assume that a sequence 𝑡𝑡𝑡𝑡  has 𝑘𝑘𝑘𝑘(𝑘𝑘𝑘𝑘 > 0)  ending q-
items 𝑖𝑖𝑖𝑖 in a q-sequence 𝑠𝑠𝑠𝑠 where 𝑖𝑖𝑖𝑖1 < 𝑖𝑖𝑖𝑖2 < ⋯ < 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘. The 
ULS of 𝑡𝑡𝑡𝑡  in 𝑠𝑠𝑠𝑠  is a list of 𝑘𝑘𝑘𝑘  elements, where the 
α𝑡𝑡𝑡𝑡ℎ(1 ≤ α ≤ 𝑘𝑘𝑘𝑘) element in the ULS contains: 

⎩
⎨

⎧
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: the itemset 𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆 of 𝑖𝑖𝑖𝑖α of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠    
𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: the maximum utility of 𝑖𝑖𝑖𝑖𝛼𝛼𝛼𝛼 in 𝑡𝑡𝑡𝑡  
𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: a pointer pointing to either the

 (𝛼𝛼𝛼𝛼 + 1)𝑡𝑡𝑡𝑡ℎ element or null 

 

  
DDeeffiinniittiioonn  1177  ((UUCCSS::  uuttiilliittyy  cchhaaiinn  ssttrruuccttuurree)) 
Given a sequence 𝑡𝑡𝑡𝑡 and q-sequence 𝑠𝑠𝑠𝑠. The 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in 
𝑠𝑠𝑠𝑠 is denoted and defined as 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)  

= �𝑝𝑝𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: is the prefix extension utility of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠  
𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆: is the 𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑆𝑆𝑆𝑆 of sequence 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠                       

 
DDeeffiinniittiioonn  1188  ((CCHHUUSS::  nnooddee  ssttrruuccttuurre)) 
Given a sequence 𝑡𝑡𝑡𝑡, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is denoted 
and defined as 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡)

= �
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: the set of sequence IDs containing 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵

𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆

)                                                   

 
DDeeffiinniittiioonn  1199  ((CCoonnccaatteennaattiioonn)) 
Given a sequence 𝑡𝑡𝑡𝑡 , there are two types of 
concatenation of  𝑡𝑡𝑡𝑡: 
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� I − Extension: insert an item into the last itemset of 𝑡𝑡𝑡𝑡   
S − Extension: add a new 1 − itemset at the end of 𝑡𝑡𝑡𝑡       

For example, ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)⟩  and ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐)(𝑎𝑎𝑎𝑎)⟩  is generated by 
performing an I-Extension and an S-Extension of the 
sequence ⟨(𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐)⟩, respectively.  
 
DDeeffiinniittiioonn  2200  ((SSWWUU::  wweeiigghhtteedd  sseeqquueennccee  uuttiilliizzaattiioonn)) 
SWU of a sequence 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is defined as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) = � 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′⊆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

For example, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(⟨𝑎𝑎𝑎𝑎(𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒)⟩) = 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠1) + 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠2) + 𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠3) + 
𝑢𝑢𝑢𝑢(𝑠𝑠𝑠𝑠4)= 91 +  96 +  82 +  114 =  383. 
 
TThheeoorreemm  11  ((SSeeqquueennccee  wweeiigghhtteedd  ddoowwnnwwaarrdd  cclloossuurree  
pprrooppeerrttyy) 
Given 𝑡𝑡𝑡𝑡1  and 𝑡𝑡𝑡𝑡2 , if 𝑡𝑡𝑡𝑡2  contains 𝑡𝑡𝑡𝑡1 , then 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡2) ≤
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡1). Theorem 1 can be used to evaluate whether 
an item is promising [5, 11, 14]. The CHUSP algorithm 
also uses this theorem to prune all items with an 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 <  𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 
 
DDeeffiinniittiioonn  2211  ((PPEEUU::  pprreeffiixx  eexxtteennssiioonn  uuttiilliittyy)) 
Given a sequence 𝑡𝑡𝑡𝑡 and 𝑠𝑠𝑠𝑠. The 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is denoted 
and defined as 
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠) = max{𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠):∀𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘  that is an ending 
q-item of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠} 

𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠) = � 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡, 𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠) + 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠), 𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 , 𝑠𝑠𝑠𝑠) > 0
0, otherwise                                                  

The 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚 of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 is denoted and defined as: 
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) = ∑ 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′⊆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
 
Given 𝑡𝑡𝑡𝑡1 and 𝑡𝑡𝑡𝑡2 , if 𝑡𝑡𝑡𝑡2  contains 𝑡𝑡𝑡𝑡1  then 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡2) ≤
𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡1). 
 
DDeeffiinniittiioonn  2222  ((RRSSUU::  rreedduucceedd  sseeqquueennccee  uuttiilliittyy))  
Given a sequence 𝑡𝑡𝑡𝑡 and 𝑠𝑠𝑠𝑠. The 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 of 𝑡𝑡𝑡𝑡 in 𝑠𝑠𝑠𝑠 is denoted 
and defined as: 
𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)

= �𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡′)| 𝑡𝑡𝑡𝑡′ ⊆ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡1 ∼ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡1  ⊆ 𝑠𝑠𝑠𝑠𝑠𝑠  𝑠𝑠𝑠𝑠2 ∼ 𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡𝑡2 ⊆ 𝑠𝑠𝑠𝑠
0, otherwise                                                                               

 

The RSU of the sequence 𝑡𝑡𝑡𝑡  in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵  is denoted and 
defined as: 

𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) = � 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡, 𝑠𝑠𝑠𝑠)
𝑠𝑠𝑠𝑠′∼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′⊆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

Given 𝑡𝑡𝑡𝑡1 and 𝑡𝑡𝑡𝑡2 , if 𝑡𝑡𝑡𝑡2  contains 𝑡𝑡𝑡𝑡1  then 𝑢𝑢𝑢𝑢(𝑡𝑡𝑡𝑡2) ≤
𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡1). 

TThheeoorreemm  22  ((PPrruunniinngg  ssttrraatteeggyy  bbyy  PPEEUU  aanndd  RRSSUU  [2])) 
Given a pattern 𝑡𝑡𝑡𝑡, 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) and 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) are considered 
as upper bounds on the utility of 𝑡𝑡𝑡𝑡 and its descendants. 
If 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) < 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  or 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑡𝑡) < 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , then 𝑡𝑡𝑡𝑡 
and its descendants can be pruned from the search 
space without affecting the result of the mining 
process. 
 
TThheeoorreemm  33  ((MMSSPP::  mmiinniimmuumm  ssuuppppoorrtt--bbaasseedd  pprruunniinngg)) 
Given a sequence 𝑡𝑡𝑡𝑡 , if 𝑠𝑠𝑠𝑠𝑢𝑢𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑡𝑡) < 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , then the 
sequence 𝑡𝑡𝑡𝑡 and its descendants are not CHUSP. 
 
44..  PPrrooppoossaall  AAllggoorriitthhmm  
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The pseudo-code of the CHUSP algorithm is shown 

in Algorithm 1. The input is a q-sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵, 
a sequence 𝑡𝑡𝑡𝑡  with its 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  structure, and two 
predefined parameters: 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. First, a set 
called 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is initialized to keep all CHUSPs. 
We also use the ¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  to track all but not 
closed high utility sequential patterns. The algorithm 
scans 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 to calculate the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 of all items in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 
(line 3). It then selects all items with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚  of 
greater than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  and builds the initial 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
structure and the lexicographic tree required by the 
mining process. It also removes all items with an 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚 
value less than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (line 4). The topmost node in 
that tree is the root node, where its children are q-
sequences that contain a single item. Each node other 
than the root stores a sequence 𝑡𝑡𝑡𝑡, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 structure 
of 𝑡𝑡𝑡𝑡, utility matrices, remaining utility matrices, and 
the list that contains sequence IDs called 𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 of 
1 q-items in q-sequences of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵. 
If 𝐶𝐶𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡) is less than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, then the algorithm will 
consider 𝑡𝑡𝑡𝑡  as a leaf and will not expand the 
lexicographic tree using node 𝑡𝑡𝑡𝑡, i.e., all its descendants 
will be pruned (lines 5-6). In the next step, the 
algorithm scans the projected dataset that includes 
the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 of 𝑡𝑡𝑡𝑡 in 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 to collect all items that can be 
combined with 𝑡𝑡𝑡𝑡  to form a new sequence by I-
Extension or S-Extension (line 7). Each item with an 
𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 value lower than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is discarded from the 
mining process (line 8). Then, the algorithm performs 
a loop over all items in the iExts (lines 9-15) and sExts 
(lines 16-22). For each item 𝑖𝑖𝑖𝑖  in the iExts, the 
algorithm performs an I-Extension with this item to 

form a new sequence 𝑡𝑡𝑡𝑡′  by inserting 𝑖𝑖𝑖𝑖  in the last 
itemset of 𝑡𝑡𝑡𝑡 . In addition, the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  structure, 
𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡 , and the maximum utility of 𝑡𝑡𝑡𝑡′  are 
constructed and calculated by extending the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of 
𝑡𝑡𝑡𝑡 (lines 10-11). To reduce the search space and enhance 
the mining process, CHUSP applies the MSP strategy 
(Theorem 3) to discard non-frequent patterns (line 12). 
If the condition returns true, CHUSP stops 
considering these patterns and backtracks to the 
previous step. Otherwise, the algorithm checks if the 
pattern's utility value is greater than 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. If yes, 
the pattern is a high utility sequential pattern (line 13). 
CHUSP calls the 𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 procedure to 
check if that HUSP is closed (line 14). 

The inputs of 𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠 procedure are 
two patterns 𝑡𝑡𝑡𝑡 , 𝑡𝑡𝑡𝑡′ , 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and ¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . 
Note that the sequence 𝑡𝑡𝑡𝑡′ is a super-sequence of 𝑡𝑡𝑡𝑡 by 
performing the I-Extension or S-Extension 
concatenation. We consider 𝑡𝑡𝑡𝑡  and 𝑡𝑡𝑡𝑡′  as the previous 
and current sequences since 𝑡𝑡𝑡𝑡′ is generated from 𝑡𝑡𝑡𝑡. 
The procedure checks if the previous sequence 𝑡𝑡𝑡𝑡 is a 
CHUSP by comparing its support count with the 
support count of the current sequence 𝑡𝑡𝑡𝑡′. If the two 
support values are equal, it means that 𝑡𝑡𝑡𝑡  is not a 
CHUSP because it has a super-sequence with the 
same support (break the Def. 15), then the procedure 
checks if 𝑡𝑡𝑡𝑡 is in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, if yes then removes 𝑡𝑡𝑡𝑡 from 
this set (line 3). The procedure also checks if 𝑡𝑡𝑡𝑡 is in 
¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; if No, add 𝑡𝑡𝑡𝑡 into this set (line 4). The 
purpose of this action is to track all non-candidate 
sequences. During mining, 𝑡𝑡𝑡𝑡 may be extended to other 
𝑡𝑡𝑡𝑡′  by doing other concatenations. In this case, 𝑡𝑡𝑡𝑡 
involves in other checking procedures. The procedure 
then inserts the current sequence 𝑡𝑡𝑡𝑡′  into the 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (line 5). It is worth noting that CHUSP is 
a recursive algorithm. Thus, the current sequence 𝑡𝑡𝑡𝑡′ 
will be later called in other rounds of the algorithm to 
extend itself. In other words, the sequence 𝑡𝑡𝑡𝑡′  is the 
super-sequence of a sequence 𝑡𝑡𝑡𝑡 at this stage, but it will 
be the sub-sequence of another sequence in another 
stage. Thus, any sequences in the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  are 
candidates and may be removed from the set when the 
algorithm detects super-sequences having the same 
support. If the supports of 𝑡𝑡𝑡𝑡 and 𝑡𝑡𝑡𝑡′ are different, the 
two patterns become candidates. The procedure adds 
the current pattern 𝑡𝑡𝑡𝑡′ to the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  as a 
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candidate (line 8). Next, the procedure checks if the 
previous sequence 𝑡𝑡𝑡𝑡  is in the ¬𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . If yes, 
then it will not be a CHUSP candidate. Otherwise, 𝑡𝑡𝑡𝑡 is 
inserted into 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.  
 

The CHUSP recursively calls itself to expand 
𝑡𝑡𝑡𝑡′ (line 15). A similar process is performed for all items 
in sExts. It passes a sequence and its projected dataset 
to each recursive call as input parameters. The 
sequence dataset 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵 and lines 1-4 are used only for 
initializing the algorithm and are not performed 
during recursive calls. For each item in sExts, a new 
pattern is generated by performing an S-Extension 
(lines 16 to 22). When the algorithm completes 
recursive calls, the algorithm traverses all patterns in 
the 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶_𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 to remove non-CHUSPs from this list 
(line 23). Finally, it returns all CHUSPs as the output. 

 

55..  EExxppeerriimmeennttaall  RReessuullttss  
Experiments were performed to evaluate the 

performance of CHUSP on a computer with a 64-bit 
Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz, 12 GB of 
RAM, running Windows 10 Enterprise LTSC. The 
source code is publicly available on GitHub. All the 
algorithms were implemented in 𝐶𝐶𝐶𝐶#. Fig. 1 shows the 
user interface of the CHUSP algorithm. The proposed 
algorithm was compared with two algorithms. The 
first algorithm is the HUS-Span algorithm [2] for 
mining HUSPs. The second algorithm is FHUSP, an 
extension of HUS-Span for mining FHUSPs. The 
performance of the three algorithms has been 
compared on six real datasets. The characteristics of 
these datasets are shown in Table 7. They are six real-
life datasets. They have varied characteristics, such 
as sparse and dense datasets, short and long 
sequences. 

For each dataset, the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 was decreased until 
a clear winner was observed, or algorithms became too 
long to execute. In some cases, a constraint on the 
maximum length of CHUSP (𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ) was used to 
speed up the experiments. For 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , a suitable 
empirical value was chosen for each dataset to ensure 
that the algorithms discovered a certain number of 
CHUSPs. The 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 values for Sign, Kosarak10k, 
BMSWebView1, BMSWebView2, Fifa and Bible were 
set to 50%, 5%, 20%, 20%, 0.5%, 0.5%, respectively. 

 
Table 7: Characteristics of the datasets 

 

Dataset #Sequence  #Item  Avg. seq 
length 

Sign 800 310 51.99 
Kosarak10k 10,000 10,094 8.14 
BMSWebView1 59,601 497 2.51 
BMSwebview2 77,512 3,340 4.62 
Fifa 20,450 2,990 34.74 
Bible 36,369 13,905 21.64 

 

 
 

Figure 1: The CHUSP application 
 

First, the execution time of CHUSP is compared 
with HUS-Span and FHUSP. Fig. 2 shows that 
CHUSP outperforms the compared algorithms on all 
datasets. Each subfigure's vertical and horizontal axes 
represent the execution time (milliseconds) and 
minimum utility threshold values, respectively. In 
general, for all datasets, when the minimum utility 
threshold is decreased or when datasets contain more 
sequences or longer sequences, the running time of the 
algorithms increases. In that case, CHUSP can be 
much more efficient than the two algorithms, 
especially on Sign, Bible, BMSWebview1, and FIFA 
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datasets. On Sign (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%)  CHUSP is 
respectively up to 295.7, 250.3, 222.7, 188.9, 156.6, 
125.9, 116.2, 75.8, 50.9, and 37.5 times faster than 
HUS-Span for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  from 12,000  to 35,000 . 
Compare with FHUSP, it is up to 292.72 , 245.01 , 
215.88, 188.51, 154.50, 118.80, 111.47, 73.24, 50.24, 
and 35.94. On BMSWebView2 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%) 
CHUSP is respectively up to 12.2, 8.9, 7.6, 6.3, 4.7, 
3.4, 3.2, 2.1, 1.9, and 1.7 times faster than HUS-Span 
for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000. It is respectively 
up to 11.5, 8.0, 7.1, 5.8, 4.1, 3, 2.3, 1.8, 1.5, and 1.3 
times faster than FHUSP. Similar results can be 
observed for other datasets. The results indicate that 
the MSP pruning strategy of CHUSP is effective and 
can prune many non-frequent patterns. In addition, 
the CHUS structure and pruning strategies are 
suitable for mining CHUSPs. Thus, the algorithm can 
facilitate the mining process and prune more non-
candidates than HUS-Span and FHUSP algorithms. 

Second, the algorithms have also been compared in 
terms of memory performance for the six datasets for 
the same 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ values as 
in the runtime experiment. Results are shown in Fig. 
3 in terms of memory usage (vertical axes) for various 
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  values (horizontal axes). CHUSP consumes 
less memory than HUS-Span in all cases. It means 
that the CHUSP structure is more effective than the 
structure used by the HUS-Span algorithm. In 
addition, the MSP strategy can filter many non-
frequent candidates. CHUSP is also better than 
FHUSP in most cases, although they are very close in 
some cases. On FIFA and Bible, we can observe that 
CHUSP performs much better than FHUSP. Except 
for the BMSWebview1 dataset, FHUSP consumes less 
memory than CHUSP on large 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  values. 
However, for low 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values, when the algorithms 
need more time to mine patterns, CHUSP 
outperforms FHUSP. Generally, for each dataset, the 
memory usage increases when the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is 
decreased, and it is also greater for larger datasets. 

Finally, the number of patterns was measured for 
various 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 threshold values on each dataset. In 

Fig. 4, vertical axes denote the number of patterns, 
and horizontal axes indicate the corresponding 
maximum threshold values. The number of patterns 
generated by CHUSP is much less than that of HUS-
Span and FHUSP for each dataset. On Sign 
(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%), for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 12,000 to 35,000, 
CHUSP found 62, 58, 51, 48, 41, 35, 31, 13, 5, and 3, 
respectively. It can be observed that the number of 
patterns by CHUSP is respectively up to 169.1, 121.2, 
93.7, 68.2, 37.7, 21.5, 16.5, 7.3, 3.4, and 1.3 times less 
than those found by HUS-Span. In addition, the 
number of patterns by CHUSP is respectively up to 
1.13, 1.09, 1.1, 1.04, 1.02, 1.03, 1.03, 1.08, 1.00, and 
1.00  times less than those found by FHUSP. On 
Kosarak10k (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 5%), the 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ was set 
to 3 for the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  values of 10,000 and 20,000 for 
HUS-Span and FHUSP; for CHUSP, this parameter 
was set to full. For 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000, 
CHUSP found 21 , 14 , 10 , 5 , 3 , 2 , 2 , 2 , 1 , and 1 
CHUSPs, respectively. It can be observed that the 
number of patterns by CHUSP is respectively up to 
3.9, 1.9, 1.4, 1.2, 1.3, 1.5, 1.5, 1.5, 2.0, and 2.0 times 
less than those by HUS-Span. In addition, the number 
of patterns by CHUSP is up to 1.4, 1.4, 1.2, 1.2, 1.3, 
1.5 , 1.5 , 1.5 , 2.0 , and 2.0  times less than those by 
FHUSP. On BMSwebview1 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.5% ). The 
𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ was set to 3 for HUS-Span and FHUSP; 
for CHUSP, this parameter was set to full. For 
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 5,000 to 35,000, CHUSP found 45, 42, 
39, 38, 31, 18, 10, 3, 2, and 2 CHUSPs, respectively. 
It can be observed that the number of patterns by 
CHUSP is respectively up to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3, 
3.4, 6, 7, and 5.5 times less than those by HUS-Span. 
In addition, the number of patterns by CHUSP is up 
to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3, 3.4, 6, 7, and 5.5 times 
less than those by FHUSP.  Similar results can be 
observed for the BMSwebview1, FIFA, and BIBLE 
datasets. These results indicate that the CHUSP 
algorithm can eliminate many non-candidate patterns 
from the search space and reduce the number of 
patterns from the mining process. 
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datasets. On Sign (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%)  CHUSP is 
respectively up to 295.7, 250.3, 222.7, 188.9, 156.6, 
125.9, 116.2, 75.8, 50.9, and 37.5 times faster than 
HUS-Span for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  from 12,000  to 35,000 . 
Compare with FHUSP, it is up to 292.72 , 245.01 , 
215.88, 188.51, 154.50, 118.80, 111.47, 73.24, 50.24, 
and 35.94. On BMSWebView2 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%) 
CHUSP is respectively up to 12.2, 8.9, 7.6, 6.3, 4.7, 
3.4, 3.2, 2.1, 1.9, and 1.7 times faster than HUS-Span 
for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000. It is respectively 
up to 11.5, 8.0, 7.1, 5.8, 4.1, 3, 2.3, 1.8, 1.5, and 1.3 
times faster than FHUSP. Similar results can be 
observed for other datasets. The results indicate that 
the MSP pruning strategy of CHUSP is effective and 
can prune many non-frequent patterns. In addition, 
the CHUS structure and pruning strategies are 
suitable for mining CHUSPs. Thus, the algorithm can 
facilitate the mining process and prune more non-
candidates than HUS-Span and FHUSP algorithms. 

Second, the algorithms have also been compared in 
terms of memory performance for the six datasets for 
the same 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, and 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ values as 
in the runtime experiment. Results are shown in Fig. 
3 in terms of memory usage (vertical axes) for various 
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  values (horizontal axes). CHUSP consumes 
less memory than HUS-Span in all cases. It means 
that the CHUSP structure is more effective than the 
structure used by the HUS-Span algorithm. In 
addition, the MSP strategy can filter many non-
frequent candidates. CHUSP is also better than 
FHUSP in most cases, although they are very close in 
some cases. On FIFA and Bible, we can observe that 
CHUSP performs much better than FHUSP. Except 
for the BMSWebview1 dataset, FHUSP consumes less 
memory than CHUSP on large 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  values. 
However, for low 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 values, when the algorithms 
need more time to mine patterns, CHUSP 
outperforms FHUSP. Generally, for each dataset, the 
memory usage increases when the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is 
decreased, and it is also greater for larger datasets. 

Finally, the number of patterns was measured for 
various 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 threshold values on each dataset. In 

Fig. 4, vertical axes denote the number of patterns, 
and horizontal axes indicate the corresponding 
maximum threshold values. The number of patterns 
generated by CHUSP is much less than that of HUS-
Span and FHUSP for each dataset. On Sign 
(𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 50%), for 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 12,000 to 35,000, 
CHUSP found 62, 58, 51, 48, 41, 35, 31, 13, 5, and 3, 
respectively. It can be observed that the number of 
patterns by CHUSP is respectively up to 169.1, 121.2, 
93.7, 68.2, 37.7, 21.5, 16.5, 7.3, 3.4, and 1.3 times less 
than those found by HUS-Span. In addition, the 
number of patterns by CHUSP is respectively up to 
1.13, 1.09, 1.1, 1.04, 1.02, 1.03, 1.03, 1.08, 1.00, and 
1.00  times less than those found by FHUSP. On 
Kosarak10k (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 5%), the 𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑛𝑛𝑛𝑛𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ was set 
to 3 for the 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  values of 10,000 and 20,000 for 
HUS-Span and FHUSP; for CHUSP, this parameter 
was set to full. For 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 10,000 to 100,000, 
CHUSP found 21 , 14 , 10 , 5 , 3 , 2 , 2 , 2 , 1 , and 1 
CHUSPs, respectively. It can be observed that the 
number of patterns by CHUSP is respectively up to 
3.9, 1.9, 1.4, 1.2, 1.3, 1.5, 1.5, 1.5, 2.0, and 2.0 times 
less than those by HUS-Span. In addition, the number 
of patterns by CHUSP is up to 1.4, 1.4, 1.2, 1.2, 1.3, 
1.5 , 1.5 , 1.5 , 2.0 , and 2.0  times less than those by 
FHUSP. On BMSwebview1 (𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0.5% ). The 
𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈ℎ was set to 3 for HUS-Span and FHUSP; 
for CHUSP, this parameter was set to full. For 
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 from 5,000 to 35,000, CHUSP found 45, 42, 
39, 38, 31, 18, 10, 3, 2, and 2 CHUSPs, respectively. 
It can be observed that the number of patterns by 
CHUSP is respectively up to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3, 
3.4, 6, 7, and 5.5 times less than those by HUS-Span. 
In addition, the number of patterns by CHUSP is up 
to 3.6, 3.5, 3.5, 3.2, 3.0, 3.3, 3.4, 6, 7, and 5.5 times 
less than those by FHUSP.  Similar results can be 
observed for the BMSwebview1, FIFA, and BIBLE 
datasets. These results indicate that the CHUSP 
algorithm can eliminate many non-candidate patterns 
from the search space and reduce the number of 
patterns from the mining process. 
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Figure 2: Runtimes for various minimum utility threshold values 

 

Figure 3: Memory usage for various minimum utility threshold values 
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Figure 4: Number of patterns for various minimum utility threshold values 

 
 

66..  CCoonncclluussiioonn  
This paper proposed an algorithm named CHUSP 

for mining closed high utility sequential patterns. The 
proposed algorithm uses the CHUS structure for 
efficiently mining CHUSP. Experimental results 
indicate that CHUSP outperforms HUS-Span and 
FHUSP algorithms in terms of execution time and 
memory usage. The number of patterns generated by 
the three algorithms was also measured for various 
minimum utility threshold values. The results show 
that all the pruning strategies used in CHUSP can 
eliminate many non-CHUSP and thus speed up the 
mining process. In future work, we will design a 
parallel framework that can enhance the 
computational cost of CHUSP and extend the pattern 
mining framework for other tasks [14, 19, 25–27]. 
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