
NAIS Journal 19

 AI-assisted In-band Network Telemetry Framework
for Fast Network Failure Detection in Optical Core Networks

Badr Mochizuki
（The Kyoto College of Graduate Studies for Informatics）

Abstract
 This paper introduces the key challenges for building an AI-assisted framework for network

failure detection and localization in optical core networks based on in-band network telemetry data.
The main idea consists in feeding telemetry data as input for the AI module in order to achieve real-
time network failure detection and localization.

■ 1．Introduction

The aim of this paper is to discuss how to
leverage In-band Network Telemetry (INT) [1] -
that is network state information inserted into
production flow packets as header fields - for both
detecting. in real-time when a failure occurs. In
particular, this paper considers exploiting the low
latency of INT in order to maintain high
a v a i l a b i l i t y o f t h e o p t i c a l c o r e d a t a
communication networks. Three key challenges
can be identified: the development of a framework
for dynamic orchestration of INT metadata
collection without significantly degrading the
overall network performance in terms of
b a n d w i d t h a n d q u a l i t y o f s e r v i c e ; t h e
specification of a lightweight method for real-time
detection of silent failures (subtle failures that
become harmful over time) from the collected INT
information; the realization of fast and accurate
network failure localization. The design of the
INT metadata collection framework will be of
particular interest because it will serve a basis
f o r bo th ne twork fa i lure de tec t i on and
localization.

In the rest of this paper, we introduce
background information in section 2 and
summarize the main research trends in network
failure detection and localization in section 3. In
Sections 4 and 5, we discuss the key challenges

and its implementation strategies for AI-assisted
dynamic orchestration of INT metadata collection
in order to real ize fai lure detection and
localization in optical core networks. Finally,
conclusions are presented in Section 6.

Fig. 1: Spectrum grids for traditional optical
core networks and EONs.

20 NAIS Journal

■ 2. Background

A. Optical core networks
In optical core networks, light is used to

transmit data over optical fibers at the speed of
light, hence allowing ultrafast transmission and
making it ideal for core networks that span over
long distances [2].

Fig. 2: Software defined EONs.

Network operators are updat ing their
equipment on a regular basis in order to cope
with the continuous increase in internet
bandwidth. The network traffic is becoming
increasingly heavy and bursty as the popularity
of cloud computing, Internet of Things (IoT) and
5G mobile communications increases. However,
adding new network equipment is costly and has
physical limitations. As a promising cost-effective
solution, Elastic Optical Networks (EON) have
been proposed. EONs are optical circuit switching
networks where first a lightpath is established,
then data is transmitted all optically and finally
the lightpath is released [3]. Here, lightpaths are
established and released dynamically. Please note
that data is transmitted through optical channels,
called spectrum grids, in the optical fibers [4].
EON can support efficiently higher data bit rates
than the traditional optical core networks, by
dividing a wavelength into multiple frequency
slots (FSs). Note that FSs have to be allocated
adjacently (spectrum contiguity constraint) [5].

Figure 1 shows that the spectrum grid size is
fixed in traditional optical core networks and is

variable in EON. In this figure, the grid size for
traditional optical core networks is fixed to 50
GHz. Therefore, if a lightpath needs 70 GHz, two
grids of size 50 GHz are used, and the remaining
30 GHz cannot be used by other lightpaths.
Hence the grid is not efficiently utilized in
traditional optical core networks. Moreover, two
guard-bands per grid is always needed even if a
lightpath utilizes multiple grids. On the other
hand, in EON, the grid size is variable. Here, the
optical spectrum can be allocated per FS unit,
and only two guard-bands are needed per
lightpath. As a result, the optical spectrum can be
utilized more efficiently in EON.

B. Software Defined EONs
Recently, due to the expansion of datacenters

and the exponential increase in internet traffic,
optical core networks can no longer be controlled
with the traditional management framework.
Software defined networking (SDN) has been
proposed as a promising solution because network
operators can program their network devices
much more freely. In SDN, the data plane and the
control plane are physically separated, and a
centralized control plane can add, delete or
modify forwarding rules on SDN switches [6].
This network architecture is illustrated in Fig. 2
for the case of software defined EON denoted as
SD-EON.

In the data plane of SD-EONs, packets are sent
by the optical switches on the fiber links following
the predefined packet forwarding rules. On the
other hand, the control plane consists of an SDN
controller that translates network management
policies into packet forwarding rules. These rules
can be expressed as flow entries which are
installed on flow tables at the SD-EON switches.
The interaction between the SDN controller and
S D - E O N s w i t c h e s i s p e r f o r m e d u s i n g
communication protocols such as OpenFlow [7].

C. In-band Network Telemetry
In-band network telemetry (INT) is the basis

for a variety of applications such as virtual/

NAIS Journal 21

augmented reality, health monitoring and self-
driving cars. INT is also a relatively new network
monitoring framework that operates at the data
plane. By using programmable network devices,
it is possible to collect in real-time INT metadata
such as network devices internal states (e.g.,
switch ID, queue occupancy) and network
performance metrics (e.g., latency). This can be
achieved by encapsulating information inside the
packet as headers fields, which are interpreted by
network devices as instructions to collect INT
metadata. Finally, the collected header fields are
extracted and reported to a monitoring system,
which in turn analyses the INT metadata and
reacts if problems are detected in the network.
Consequently, INT can significantly enhance
network-wide visibility, and network problems
such as network failure can be detected in a
timely manner [1].

Fig. 3: P4 forwarding model.

D. Data plane programming using P4 language
In traditional SDNs, it is possible to modify the

behavior of the control plane but not that of the
data plane. Concretely, routing policies can be
flexibly defined, but the corresponding actions
cannot be flexibly executed. In order to resolve
this issue, a programming language for the data
plane named P4 (Programming Protocol-
independent Packet Processors) has been
proposed by the inventors of OpenFlow in [8]. P4
can express how incoming packets are processed
by the SDN switches, without modifying the
control plane. It is currently widely used in

research because it is an open-source and
permissively licensed language.

P4 uses the concept of match-action pipelines
as illustrated in Fig. 3. Packet forwarding in SDN
switches is performed by table lookups and its
corresponding actions. Here, the parser, the
ingress pipeline, the egress pipeline and the
deparser can be modified by P4 programming. An
incoming packet is first handled by the parser
that will extract the packet header, and the
packet payload is buffered. The extracted header
is then passed to the ingress pipeline that will
process the packet header according to the
p r o g r a m m e d a c t i o n s a n d l o o k u p k e y s .
Furthermore, the ingress pipeline determines an
egress port and a queue into which the packet is
placed. Next, the packet is passed to the egress
pipeline which can be programmed to process the
packet in a specific manner. Finally, the packet’s
payload and headers are assembled and
forwarded to the egress port by the deparser.

■ 3. Related Research

There is extensive research in the literature
about network failure detection and localization
[9-11]. However, most of the proposed methods
are implemented in the control plane and hence
present a centralized solution to be implemented
at the network controller. The main disadvantage
of this approach is the high latency required for
gathering network information at the network
controller, localizing the network failure and
pushing failure recovery instructions to the
network devices.

Furthermore, in recent years, there have been
several research work about using INT as a
network monitoring framework. While most of
the proposed research work has focused on
proposing methods for using INT to debug
network events such as congestion or traffic
bursts, little research work has addressed the
challenges about how to design an autonomous
network monitoring framework as well as
network failure detection and localization using

22 NAIS Journal

INT. Since network monitoring using INT
requires collecting networking information
regularly, data overhead is introduced in the
n e t w o r k e v e r y t i m e I N T m e t a d a t a i s
encapsulated into packets. Hence, it is important
to consider the tradeoff between network
overhead and real-time network monitoring. A
promising solution that is aware of the above-
mentioned tradeoff is to apply machine learning
techniques to dynamically and autonomously
collect INT metadata. In addition, since INT is
used in the data plane, a distributed approach to
network failure detection and localization is
required, and the previously proposed centralized
approaches cannot be applied, hence new
approaches have to be considered.

In the next section, we discuss two key
challenges for AI-assisted dynamic orchestration
of INT metadata collection in order to realize
failure detection and localization in SD-EONs.

■ 4. Key Challenges

Key Challenge 1: How to dynamically orchestrate
the collection of INT metadata?

Using INT to monitor the network state is of
particular significance because it is a powerful
tool that allows detecting network anomalies in
real-time. INT metadata are collected and
delivered to a network monitoring application.
Each monitoring application is specialized in
identifying a specific network anomaly (e.g.
malicious network attacks, congestion or network
failures) and reacts to it.

In this section, the main purpose is to
orchestrate dynamically the process of INT
metadata collection in order to maximize network
status visibility. This is particularly challenging
because of three main problems. First, if INT
metadata are incorporated in all packets, a
significant bandwidth overhead will be generated,
which in turn will affect the network performance
by introducing delays in communications. Second,
the amount of INT metadata that can be
embedded into packets is limited due to the

maximum transmission unit (MTU). Third, each
monitoring application may require different INT
metadata to be collected at different rates,
therefore some INT metadata may need to be
collected at different rates (more or less
frequently) than others.

The first and second problems can be solved by
formulating an optimization problem that
maximizes the number of collected INT metadata.
For the third problem, a machine learning model
can be designed and trained to identify which
INT metadata is important to be collected based
on the monitoring application’s needs.

This INT collection framework will constitute
the basis for the next key challenge and will have
a decisive impact on performance in terms of
delay and network visibility.

Key Challenge 2: How to detect and localize
network failures in real-time?

Network failures can range from silent failures
-where packets are dropped without notification-
to complete power loss of network devices,
causing network service unavailability. Silent
failures can be caused by flaws in the software or
errors in network configuration. While silent
failures do not cause immediate network service
unavailability, damage can be inflicted over time
such as severe performance degradation,
thrashing memory, flaky I/O, and eventually
network service unavailability. In addition, silent
failure detection and localization can be time
consuming because no explicit notification is
provided when the failure occurs.

In th is sect ion , two sub problems are
considered, namely lightweight failure detection
and accurate network failure localization. In the
first sub-problem, the main challenge consists in
devising a method that can detect early indicators
of silent failures based on the collected INT
metadata. This can be achieved by embedding
and collecting an exhaustive amount of INT
metadata in order to detect potential indicators of
failures such as high queue occupancy or high
packet processing time. However, the bandwidth

NAIS Journal 23

overhead caused by those INT metadata may
d e g r a d e t h e n e t w o r k p e r f o r m a n c e a n d
consequently increase the failure detection time
which in turn will delay the failure localization
time. Therefore, the main difficulty consists in
detecting silent failures with minimum INT
metadata in order to realize real-time detection.
In the second sub problem, the goal is to localize
precisely the silent failure. While it is possible to
identify in which path a failure occurred, it is
difficult to determine the exact link or network
device that is malfunctioning. Rerouting through
alternative link-disjoint paths might be a
temporary fix, however this could trigger
unwanted congestion or failures in other parts of
the network. Therefore, it is important to identify
and locate precisely the failure immediately after
it occurs.

■ 5. Implementation strategies

Theme 1: Orchestrat ion of INT metadata
collection using machine learning

In this section, guidelines for solving the
problems presented in key challenge 1 are
discussed. The proposed framework can be
realized by solving two problems: Maximizing the
number of collected INT metadata and the
identification of which INT metadata is important
to be collected.

In the f i r s t prob lem, l e t ’s cons ider a
communication network N with D network
devices, a set of M monitoring applications, and a
set of I INT metadata. These INT metadata have
dependencies that are spatial – that is the INT
metadata has to be collected from a specific
network device - or temporal if the INT metadata
has to be collected within a time limit. A spatial
dependency s at device d for INT metadata i and
monitoring application m is denoted as s i

d,m . In
addition, a temporal dependency t for INT
metadata i and monitoring application m is
denoted as t i

m . Therefore, this problem can be
f o r m u l a t e d a s a M i x e d I n t e g e r L i n e a r
Programming model. The maximization of the

number of collected INT metadata can be
achieved by solving an optimization problem
where the number of spatial and temporal
dependencies are maximized. The objective
function can be expressed as:

　Maximize , +

The above optimization problem should
consider several constraints including the
network flow capacity cannot be exceeded; an INT
metadata should be collected at most by one
network flow at a given network device.

In the second problem, it is assumed that each
monitoring application may give different
importance to an INT metadata depending on the
monitoring application needs. In addition, this
importance may change dynamically depending
on the network state and time. As a solution to
this problem, a learning mechanism can be used
to guide the INT collection process based on the
importance of an INT metadata that could be
quantified in weights. Furthermore, Machine
learning models such as deep learning methods
could be used in the learning mechanism in order
to infer those weights. The inputs for the learning
mechanism would include not only the collected
INT metadata (e.g. switch ID, ingress/egress port
ID, packet processing time or queue length) but
also specific information related the network flow
or the needs of the monitoring applications that
will analyze the collected INT metadata. Next, in
order to keep an up-to-date network visibility, the
weights representing the importance of each INT
metadata must be updated periodically over time.
Moreover, some weights may be updated more
frequently than others depending on how often a
monitor ing appl icat ion requires an INT
metadata.

Two main advantages are provided with this
framework: bandwidth overhead is reduced by
maximizing the number of col lected INT
metadata at a time interval; and an accurate
network-wide visibility can be achieved by
identifying which INT metadata is important.

24 NAIS Journal

Finally, the collected INT metadata by the
above-mentioned framework will serve as a basis
for lightweight detection and accurate localization
of silent failures.

Theme 2: Lightweight detection and accurate
localization of silent failures

In this section, the approach for solving the
problems indicated in Key Challenge 2 is
presented. Here, the development of a monitoring
application at each network device is proposed
and consists of two modules: lightweight failure
detection module and accurate failure localization
module.

A） Lightweight failure detection
This module will analyze the INT metadata

collected by the INT framework designed in
theme 1. Specifically, INT metadata such as
switch ID, ingress and egress port ID are
considered. This module will create locally a
“Path table” to store all active paths to all
reachable destinations, where each table entry
corresponds to a path to a single destination.
Therefore, there may be multiple table entries for
a single destination if there are multiple feasible
paths to that destination. In addition, each table
entry may hold switch ID, ingress and egress port
ID for each intermediate network device of the
specified path. Furthermore, each table entry will
be stored temporarily by setting an aging time in
order to limit the memory usage at each network
device. Here, the table entries are updated before
the aging time has elapsed based on the INT
metadata provided by the INT collection
framework. If the lightweight detection module
does not receive the required INT metadata from
the INT collection framework before the aging
time has elapsed, then all the timed-out path
entries are deleted and a failure is detected at
those paths. Please note that the aging time will
be changed dynamically based on the frequency
of INT metadata collection that is regulated by
the machine learning mechanism used in the
framework presented in theme 1.

B） Accurate Failure localization
After a failure is detected, a timed-out path is

passed to the failure localization module which is
then executed in order to determine the precise
location of the failure along the timed-out path.
This module can localize failures through the use
of backward probing in three steps. First, an INT
probe packet is sent through the timed-out path.
Second, at each intermediate device, the status of
the egress port is checked. If the status is UP, the
probe packet will be forwarded to the next
intermediary device without embedding any
information in the probe packet header.
Otherwise, if the egress port status is DOWN, the
switch ID and egress port ID are embedded in the
probe packet’s header. Third, the probe packet is
sent through the same ingress port back to the
source device. Please note that no additional
information is embedded in the header when the
probe packet is sent backwards to the source.
Finally, the failure localization module will pass
the switch ID and the port ID where the failure
occurred to a failure recovery module.

■ 6. Conclusion and Future work

The strategies mentioned in section 5 will be
confirmed through practical experiments using
the network simulator Mininet [12], and INT
data collection procedures will be implemented in
P4. Furthermore, the P4 program will be written
for the V1Model architecture implemented on
P4.org's bmv2 software switch, using the
experimental setup provided in the P4 tutorial
[13]. As a future work, a network failure recovery
module wi l l be implemented in order to
complement failure detection and localization.

[References]
[1] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X.

Liu, and N. Li, “In-band network telemetry: a
survey”, Computer Networks, vol. 186, pp. 1-24, 2021.

[2] B. C. Chatterjee, N. Sarma, P. P. Sahu, and E. Oki,
“Limitations of Conventional WDM Optical Networks
and Elastic Optical Networks for Possible Solutions”,
Routing and Wavelength Assignment for WDM-based

NAIS Journal 25

Optical Networks, Springer, Cham, vol. 410, pp. 101-
115, 2017.

[3] O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic
Optical Networking: A New Dawn for the Optical
Layer?”, IEEE Communications Magazine, vol. 50, no. 2,
pp. S12–S20, 2012.

[4] B. C. Chatterjee, N. Sarma, and E. Oki, “Routing and
Spectrum Allocation in Elastic Optical Networks: A
Tutorial”, IEEE Communications Surveys & Tutorials,
vol. 17, no. 3, pp. 1776-1800, 2015.

[5] M. Recalcan, F. Musumeci, M. Tornatore, S. Bregni,
and Achille Pattavina, “Benefits of Elastic Spectrum
Allocation in Optical Networks with Dynamic Traffic”,
IEEE Latin America Transactions, vol. 13, no. 11, pp.
3642-3648, 2015.

[6] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined
networking: Past, present, future of programmable
networks”, IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1617–1634, 2014.

[7] Open Networking Foundation, https: / /www.
opennetworking.org

[8] P. Bosshart et al., “P4: Programming Protocol-
Independent Packet Processors”, ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 88–
95, 2014.

[9] PC Fonseca and ES Mota, “A survey on fault
management in software-defined networks”, IEEE
Communications Surveys & Tutorials, vol. 19, no 4, pp.
2284-2321, 2017.

[10] F. Musumeci, C. Rottondi, G Corani, S. Shahkarami,
F, Cugini, and M. Tornatore, “A Tutorial on Machine
Learning for Failure Management in Optical
Networks”, Journal of Lightwave Technology, vol. 37, no.
16, pp. 4125-4139, 2019.

[11] J. Ali, G. Lee, B. Roh, D.K. Ryu, and G. Park,
“Software-Defined Networking Approaches for Link
Failure Recovery: A Survey”, Sustainability, vol. 12, no.
10, 2020.

[12] Mininet: http://mininet.org/
[13] P4 Tutorial: https://github.com/p4lang/tutorials

◆著者紹介

望月　バドル　Badr Mochizuki

京都情報大学院大学　講師
福井大学大学院工学研究科修了　工学博士
奈良先端科学技術大学院大学情報科学研究科修了 工学修士
元 CNRS研究所（フランス）　研究員
Al Akhawayn大学（モロッコ）　工学士

