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Abstract
 This paper introduces the key challenges for building an AI-assisted framework for network 

failure detection and localization in optical core networks based on in-band network telemetry data. 
The main idea consists in feeding telemetry data as input for the AI module in order to achieve real-
time network failure detection and localization.

■ 1．Introduction

The aim of this paper is to discuss how to 
leverage In-band Network Telemetry (INT) [1] - 
that is network state information inserted into 
production flow packets as header fields - for both 
detecting. in real-time when a failure occurs. In 
particular, this paper considers exploiting the low 
latency of INT in order to maintain high 
a v a i l a b i l i t y  o f  t h e  o p t i c a l  c o r e  d a t a 
communication networks. Three key challenges 
can be identified: the development of a framework 
for dynamic orchestration of INT metadata 
collection without significantly degrading the 
overall  network performance in terms of 
b a n d w i d t h  a n d  q u a l i t y  o f  s e r v i c e ;  t h e 
specification of a lightweight method for real-time 
detection of silent failures (subtle failures that 
become harmful over time) from the collected INT 
information; the realization of fast and accurate 
network failure localization. The design of the 
INT metadata collection framework will be of 
particular interest because it will serve a basis 
f o r  bo th  ne twork  fa i lure  de tec t i on  and 
localization.

In the rest of  this paper,  we introduce 
background information in section 2 and 
summarize the main research trends in network 
failure detection and localization in section 3. In 
Sections 4 and 5, we discuss the key challenges 

and its implementation strategies for AI-assisted 
dynamic orchestration of INT metadata collection 
in order to  real ize fai lure detection and 
localization in optical core networks. Finally, 
conclusions are presented in Section 6.

Fig. 1:  Spectrum grids for traditional optical 
core networks and EONs.
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■ 2. Background

A. Optical core networks
In optical core networks, light is used to 

transmit data over optical fibers at the speed of 
light, hence allowing ultrafast transmission and 
making it ideal for core networks that span over 
long distances [2]. 

Fig. 2: Software defined EONs.

Network operators  are  updat ing  their 
equipment on a regular basis in order to cope 
with the continuous increase in internet 
bandwidth. The network traffic is becoming 
increasingly heavy and bursty as the popularity 
of cloud computing, Internet of Things (IoT) and 
5G mobile communications increases. However, 
adding new network equipment is costly and has 
physical limitations. As a promising cost-effective 
solution, Elastic Optical Networks (EON) have 
been proposed. EONs are optical circuit switching 
networks where first a lightpath is established, 
then data is transmitted all optically and finally 
the lightpath is released [3]. Here, lightpaths are 
established and released dynamically. Please note 
that data is transmitted through optical channels, 
called spectrum grids, in the optical fibers [4]. 
EON can support efficiently higher data bit rates 
than the traditional optical core networks, by 
dividing a wavelength into multiple frequency 
slots (FSs). Note that FSs have to be allocated 
adjacently (spectrum contiguity constraint) [5]. 

Figure 1 shows that the spectrum grid size is 
fixed in traditional optical core networks and is 

variable in EON. In this figure, the grid size for 
traditional optical core networks is fixed to 50 
GHz. Therefore, if a lightpath needs 70 GHz, two 
grids of size 50 GHz are used, and the remaining 
30 GHz cannot be used by other lightpaths. 
Hence the grid is not efficiently utilized in 
traditional optical core networks. Moreover, two 
guard-bands per grid is always needed even if a 
lightpath utilizes multiple grids. On the other 
hand, in EON, the grid size is variable. Here, the 
optical spectrum can be allocated per FS unit, 
and only two guard-bands are needed per 
lightpath. As a result, the optical spectrum can be 
utilized more efficiently in EON.

B. Software Defined EONs
Recently, due to the expansion of datacenters 

and the exponential increase in internet traffic, 
optical core networks can no longer be controlled 
with the traditional management framework. 
Software defined networking (SDN) has been 
proposed as a promising solution because network 
operators can program their network devices 
much more freely. In SDN, the data plane and the 
control plane are physically separated, and a 
centralized control plane can add, delete or 
modify forwarding rules on SDN switches [6]. 
This network architecture is illustrated in Fig. 2 
for the case of software defined EON denoted as 
SD-EON.

In the data plane of SD-EONs, packets are sent 
by the optical switches on the fiber links following 
the predefined packet forwarding rules. On the 
other hand, the control plane consists of an SDN 
controller that translates network management 
policies into packet forwarding rules. These rules 
can be expressed as flow entries which are 
installed on flow tables at the SD-EON switches. 
The interaction between the SDN controller and 
S D - E O N  s w i t c h e s  i s  p e r f o r m e d  u s i n g 
communication protocols such as OpenFlow [7].

C. In-band Network Telemetry
In-band network telemetry (INT) is the basis 

for a variety of applications such as virtual/
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augmented reality, health monitoring and self-
driving cars. INT is also a relatively new network 
monitoring framework that operates at the data 
plane. By using programmable network devices, 
it is possible to collect in real-time INT metadata 
such as network devices internal states (e.g., 
switch ID, queue occupancy) and network 
performance metrics (e.g., latency). This can be 
achieved by encapsulating information inside the 
packet as headers fields, which are interpreted by 
network devices as instructions to collect INT 
metadata. Finally, the collected header fields are 
extracted and reported to a monitoring system, 
which in turn analyses the INT metadata and 
reacts if problems are detected in the network. 
Consequently, INT can significantly enhance 
network-wide visibility, and network problems 
such as network failure can be detected in a 
timely manner [1].

Fig. 3: P4 forwarding model.

D. Data plane programming using P4 language
In traditional SDNs, it is possible to modify the 

behavior of the control plane but not that of the 
data plane. Concretely, routing policies can be 
flexibly defined, but the corresponding actions 
cannot be flexibly executed. In order to resolve 
this issue, a programming language for the data 
plane named P4 (Programming Protocol-
independent Packet Processors) has been 
proposed by the inventors of OpenFlow in [8]. P4 
can express how incoming packets are processed 
by the SDN switches, without modifying the 
control plane. It is currently widely used in 

research because it is an open-source and 
permissively licensed language.

P4 uses the concept of match-action pipelines 
as illustrated in Fig. 3. Packet forwarding in SDN 
switches is performed by table lookups and its 
corresponding actions. Here, the parser, the 
ingress pipeline, the egress pipeline and the 
deparser can be modified by P4 programming. An 
incoming packet is first handled by the parser 
that will extract the packet header, and the 
packet payload is buffered. The extracted header 
is then passed to the ingress pipeline that will 
process the packet header according to the 
p r o g r a m m e d  a c t i o n s  a n d  l o o k u p  k e y s . 
Furthermore, the ingress pipeline determines an 
egress port and a queue into which the packet is 
placed. Next, the packet is passed to the egress 
pipeline which can be programmed to process the 
packet in a specific manner. Finally, the packet’s 
payload and headers  are  assembled and 
forwarded to the egress port by the deparser.

■ 3. Related Research

There is extensive research in the literature 
about network failure detection and localization 
[9-11]. However, most of the proposed methods 
are implemented in the control plane and hence 
present a centralized solution to be implemented 
at the network controller. The main disadvantage 
of this approach is the high latency required for 
gathering network information at the network 
controller, localizing the network failure and 
pushing failure recovery instructions to the 
network devices.

Furthermore, in recent years, there have been 
several research work about using INT as a 
network monitoring framework. While most of 
the proposed research work has focused on 
proposing methods for using INT to debug 
network events such as congestion or traffic 
bursts, little research work has addressed the 
challenges about how to design an autonomous 
network monitoring framework as well as 
network failure detection and localization using 
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INT. Since network monitoring using INT 
requires collecting networking information 
regularly, data overhead is introduced in the 
n e t w o r k  e v e r y  t i m e  I N T  m e t a d a t a  i s 
encapsulated into packets. Hence, it is important 
to consider the tradeoff between network 
overhead and real-time network monitoring. A 
promising solution that is aware of the above-
mentioned tradeoff is to apply machine learning 
techniques to dynamically and autonomously 
collect INT metadata. In addition, since INT is 
used in the data plane, a distributed approach to 
network failure detection and localization is 
required, and the previously proposed centralized 
approaches cannot be applied, hence new 
approaches have to be considered.

In the next section, we discuss two key 
challenges for AI-assisted dynamic orchestration 
of INT metadata collection in order to realize 
failure detection and localization in SD-EONs. 

■ 4. Key Challenges

Key Challenge 1: How to dynamically orchestrate 
the collection of INT metadata?

Using INT to monitor the network state is of 
particular significance because it is a powerful 
tool that allows detecting network anomalies in 
real-time. INT metadata are collected and 
delivered to a network monitoring application. 
Each monitoring application is specialized in 
identifying a specific network anomaly (e.g. 
malicious network attacks, congestion or network 
failures) and reacts to it. 

In this section,  the main purpose is  to 
orchestrate dynamically the process of INT 
metadata collection in order to maximize network 
status visibility. This is particularly challenging 
because of three main problems. First, if INT 
metadata are incorporated in all packets, a 
significant bandwidth overhead will be generated, 
which in turn will affect the network performance 
by introducing delays in communications. Second, 
the amount of INT metadata that can be 
embedded into packets is limited due to the 

maximum transmission unit (MTU). Third, each 
monitoring application may require different INT 
metadata to be collected at different rates, 
therefore some INT metadata may need to be 
collected at different rates (more or less 
frequently) than others.

The first and second problems can be solved by 
formulating an optimization problem that 
maximizes the number of collected INT metadata. 
For the third problem, a machine learning model 
can be designed and trained to identify which 
INT metadata is important to be collected based 
on the monitoring application’s needs.

This INT collection framework will constitute 
the basis for the next key challenge and will have 
a decisive impact on performance in terms of 
delay and network visibility.

Key Challenge 2: How to detect and localize 
network failures in real-time?

Network failures can range from silent failures 
-where packets are dropped without notification- 
to complete power loss of network devices, 
causing network service unavailability. Silent 
failures can be caused by flaws in the software or 
errors in network configuration. While silent 
failures do not cause immediate network service 
unavailability, damage can be inflicted over time 
such as severe performance degradation, 
thrashing memory, flaky I/O, and eventually 
network service unavailability. In addition, silent 
failure detection and localization can be time 
consuming because no explicit notification is 
provided when the failure occurs. 

In  th is  sect ion ,  two  sub  problems are 
considered, namely lightweight failure detection 
and accurate network failure localization. In the 
first sub-problem, the main challenge consists in 
devising a method that can detect early indicators 
of silent failures based on the collected INT 
metadata. This can be achieved by embedding 
and collecting an exhaustive amount of INT 
metadata in order to detect potential indicators of 
failures such as high queue occupancy or high 
packet processing time. However, the bandwidth 
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overhead caused by those INT metadata may 
d e g r a d e  t h e  n e t w o r k  p e r f o r m a n c e  a n d 
consequently increase the failure detection time 
which in turn will delay the failure localization 
time. Therefore, the main difficulty consists in 
detecting silent failures with minimum INT 
metadata in order to realize real-time detection. 
In the second sub problem, the goal is to localize 
precisely the silent failure. While it is possible to 
identify in which path a failure occurred, it is 
difficult to determine the exact link or network 
device that is malfunctioning. Rerouting through 
alternative link-disjoint paths might be a 
temporary fix, however this could trigger 
unwanted congestion or failures in other parts of 
the network. Therefore, it is important to identify 
and locate precisely the failure immediately after 
it occurs.

■ 5. Implementation strategies

Theme 1: Orchestrat ion of INT metadata 
collection using machine learning

In this section, guidelines for solving the 
problems presented in key challenge 1 are 
discussed. The proposed framework can be 
realized by solving two problems: Maximizing the 
number of collected INT metadata and the 
identification of which INT metadata is important 
to be collected.

In  the  f i r s t  prob lem,  l e t ’s  cons ider  a 
communication network N with D network 
devices, a set of M monitoring applications, and a 
set of I INT metadata. These INT metadata have 
dependencies that are spatial – that is the INT 
metadata has to be collected from a specific 
network device - or temporal if the INT metadata 
has to be collected within a time limit. A spatial 
dependency s at device d for INT metadata i and 
monitoring application m is denoted as s i

d,m . In 
addition, a temporal dependency t for INT 
metadata i and monitoring application m is 
denoted as t i

m . Therefore, this problem can be 
f o r m u l a t e d  a s  a  M i x e d  I n t e g e r  L i n e a r 
Programming model. The maximization of the 

number of collected INT metadata can be 
achieved by solving an optimization problem 
where the number of spatial and temporal 
dependencies are maximized. The objective 
function can be expressed as:

　Maximize , +  

The above optimization problem should 
consider several constraints including the 
network flow capacity cannot be exceeded; an INT 
metadata should be collected at most by one 
network flow at a given network device.

In the second problem, it is assumed that each 
monitoring application may give different 
importance to an INT metadata depending on the 
monitoring application needs. In addition, this 
importance may change dynamically depending 
on the network state and time. As a solution to 
this problem, a learning mechanism can be used 
to guide the INT collection process based on the 
importance of an INT metadata that could be 
quantified in weights. Furthermore, Machine 
learning models such as deep learning methods 
could be used in the learning mechanism in order 
to infer those weights. The inputs for the learning 
mechanism would include not only the collected 
INT metadata (e.g. switch ID, ingress/egress port 
ID, packet processing time or queue length) but 
also specific information related the network flow 
or the needs of the monitoring applications that 
will analyze the collected INT metadata. Next, in 
order to keep an up-to-date network visibility, the 
weights representing the importance of each INT 
metadata must be updated periodically over time. 
Moreover, some weights may be updated more 
frequently than others depending on how often a 
monitor ing appl icat ion requires  an INT 
metadata.

Two main advantages are provided with this 
framework: bandwidth overhead is reduced by 
maximizing the number of  col lected INT 
metadata at a time interval; and an accurate 
network-wide visibility can be achieved by 
identifying which INT metadata is important. 
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Finally, the collected INT metadata by the 
above-mentioned framework will serve as a basis 
for lightweight detection and accurate localization 
of silent failures.

Theme 2: Lightweight detection and accurate 
localization of silent failures

In this section, the approach for solving the 
problems indicated in Key Challenge 2 is 
presented. Here, the development of a monitoring 
application at each network device is proposed 
and consists of two modules: lightweight failure 
detection module and accurate failure localization 
module. 

A） Lightweight failure detection 
This module will analyze the INT metadata 

collected by the INT framework designed in 
theme 1. Specifically, INT metadata such as 
switch ID, ingress and egress port ID are 
considered. This module will create locally a 
“Path table” to store all active paths to all 
reachable destinations, where each table entry 
corresponds to a path to a single destination. 
Therefore, there may be multiple table entries for 
a single destination if there are multiple feasible 
paths to that destination. In addition, each table 
entry may hold switch ID, ingress and egress port 
ID for each intermediate network device of the 
specified path. Furthermore, each table entry will 
be stored temporarily by setting an aging time in 
order to limit the memory usage at each network 
device. Here, the table entries are updated before 
the aging time has elapsed based on the INT 
metadata provided by the INT collection 
framework. If the lightweight detection module 
does not receive the required INT metadata from 
the INT collection framework before the aging 
time has elapsed, then all the timed-out path 
entries are deleted and a failure is detected at 
those paths. Please note that the aging time will 
be changed dynamically based on the frequency 
of INT metadata collection that is regulated by 
the machine learning mechanism used in the 
framework presented in theme 1. 

B） Accurate Failure localization
After a failure is detected, a timed-out path is 

passed to the failure localization module which is 
then executed in order to determine the precise 
location of the failure along the timed-out path. 
This module can localize failures through the use 
of backward probing in three steps. First, an INT 
probe packet is sent through the timed-out path. 
Second, at each intermediate device, the status of 
the egress port is checked. If the status is UP, the 
probe packet will be forwarded to the next 
intermediary device without embedding any 
information in the probe packet  header. 
Otherwise, if the egress port status is DOWN, the 
switch ID and egress port ID are embedded in the 
probe packet’s header. Third, the probe packet is 
sent through the same ingress port back to the 
source device. Please note that no additional 
information is embedded in the header when the 
probe packet is sent backwards to the source. 
Finally, the failure localization module will pass 
the switch ID and the port ID where the failure 
occurred to a failure recovery module.

■ 6. Conclusion and Future work

The strategies mentioned in section 5 will be 
confirmed through practical experiments using 
the network simulator Mininet [12], and INT 
data collection procedures will be implemented in 
P4. Furthermore, the P4 program will be written 
for the V1Model architecture implemented on 
P4.org's bmv2 software switch, using the 
experimental setup provided in the P4 tutorial 
[13]. As a future work, a network failure recovery 
module  wi l l  be  implemented in  order  to 
complement failure detection and localization.
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